

Capital Charge Study – Workshop #1: Kickoff Meeting

April 21, 2022

1

2

- 1. Introductions
- 2. Purpose & History
- 3. Current Methodology
- **4.** Potential Options
- 5. Advantages & Disadvantages
- 6. Discussion
- 7. Next Steps

Purpose

Study Purpose & Meeting Objective

- Study Purpose: Develop and evaluate new capital charge billing approaches and make a recommendation to Commission.
- **Drivers:** Desire to explore ways to improve the capital charge billing process, including consideration of:
 - > Move from budgeted to actual units
 - > True-up procedure

4

- > Revise the capital charge component from 65% to 100% of total capital
- > Other approaches to be identified...
- Meeting Objective: Identify a set of preliminary capital charge billing options to carry forward for further analysis.
- Stakeholder Advisory Group Role: Serve in an advisory capacity to NEW Water to inform the Capital Charge Study process.

Wastewater Cost-of-Service Analysis Process

6

History of the Capital Charge

7

Concept: Implemented to stabilize a portion of annual cost and revenue.

Development: The capital charge was introduced in 2014 following completion of a prior Study "Rate Methodology for Cost of Service Allocation".

Methodology: The capital charge is allocated to each customer based on proportion of customer's budgeted flow and loads relative to total.

Note: <u>Not a new or additional charge</u>, but merely a different way to collect a portion of the Total Budget Requirement.

History of the Capital Charge

8

Budget Year	Amount of Capital Charge*	How Capital Charge Distributed/Collected			
Pre 2014	No capital charge	All capital collected via parameter rates based on actual system use			
2014	15% of total budget	Collected based on budgeted system use,			
2015		equal across parameters			
2016					
2017	45% of capital budget				
2018	65% of capital budget				
2019		Collected based on budgeted system use,			
2020		across parameters consistent with our cost methodology			
2021					
2022					

Current Approach

Identify Revenue Requirements

Wastewater Cost of Service Analysis

Allocation of Revenue Requirements

Illustration of Current Methodology

Illustration of cost distribution

Distribution of Budgeted Revenue Requirement

Illustration of Current Methodology

A. Portion From Volume & Loading Charges 35% or \$7,757,000

1. Adjust for GP, Mill Charges and Other Revenues Remaining portion = \$4,025,000

2. Allocate costs to Parameters based on Fixed Asset Allocation

Customer	Flow	BOD	TSS	Phos	TKN
ALL	14.4%	33.2%	45.3%	3.1%	4.0%
ALL	\$0.58M	\$1.34M	\$1.82M	\$0.13M	\$0.16M

3. Divide by Flows and Loadings to Calculate Unit Rate and Bill Based on Actual Flows and Loadings

Customer	Flow	BOD	TSS	Phos	TKN
ALL	\$0.0500	\$0.0600	\$0.0900	\$0.3000	\$0.0500
Customer X	X MG	X LBS	X LBS	X LBS	X LBS

4. Customer X Portion = (\$0.0500 x X MG Flow) + (\$0.0600 x X LBS BOD...etc)

Illustration of Current Methodology

B. Portion from Capital Charge 65% or \$14,406,000

1. Allocate Capital Charge to Parameters based on Fixed Asset Allocation

Customer	Flow	BOD	TSS	Phos	TKN
ALL	14.4%	33.2%	45.3%	3.1%	4.0%
ALL	\$2.07M	\$4.79M	\$6.52M	\$0.45M	\$0.58M

2. Distribute Capital Charge to Customers based on Budgeted Flow / Strength

Customer	Flow	BOD	TSS	Phos	TKN
Customer X	2.1%	8.2%	4.2%	6.0%	8.9%

3. Customer X Portion = (2.1% x \$2.07M) + (8.2% x \$4.79M) + etc...

* Method results in the <u>same customer allocation as if there was no capital charge</u>, and the costs were recovered through the variable rates (assuming actual usage mirrored budgeted usage).

How are budgeted units estimated?

Volume:

- Historical billing data is analyzed using a weighted average with less weight on outlier years
- A 30-year precipitation average is reviewed
- Estimates are vetted to ensure results are within range
- A growth percentage is then added to baseline flow based on trends
- Feedback from customers to gather information on expected changes and review results

Loading:

- Historical billing data average (1 to 5 years) is the basis (note there is a data lag)
- More industry driven, so new / lost industries, and customer process changes included
- A growth percentage is then added to baseline flow based on trends
- Manual adjustments based on industry knowledge, feedback from customers, and observed trends are employed as needed

Note: All figures shown here are illustrative.

Using budgeted or actual units won't impact NEW Water revenues

Customer	Budgeted Units	%	Actual Units	%		
Customer 1	5,000,000	50%	2,000,000	25%		
Customer 2	5,000,000	50%	6,000,000	75%		
Total	10,000,000	100%	8,000,000	100%		
Cost	%	Customer	Unit Rate	Budget		Actuals Based
O&M + 35% Cap	ital \$25,000,000		Revenue	Capital	Charge	Capital Charge
65% Capital Cha	rge \$20,000,000	Customer	1 \$5,000,000	\$10,00	00,000	\$5,000,000
Item	Value	Customer 2	2 \$15,000,000	\$10,00	00,000	\$15,000,000
		Total	\$20,000,000	\$20,00	00.000	\$20,000,000
O&M + 35% Cap	ital \$25,000,000				,	
Units	10,000,000	\$5M Rate \$0 Change in Total		otal Capital		
Unit Rate	\$2.5 / unit		Revenue	Charge Revenue Regardless		e Regardless
			Shortfall	of Basi	s, Just N	lix Changes

What is the goal?

What is most important to you regarding the capital charge? Please click each option in order of importance.

TOTAL CALLS IN A CONTRACT SEA

Preliminary options

1. Status quo	 Process: Capital charge allocated to customers based on budgeted units, capital charge is billed at 1/12th per month. Examples: NEW Water (See prior slides)
2. Year-end true-up	 Process: Use budgeted units during the year, redistribute capital charge at end of the year using actual units settled with December invoice payment (or to-be-determined deadline). Examples: DC Water
3. In-year true-up (or actuals)	 Process: Capital charge allocated to each customer adjusted using actuals every six months, quarterly, or just-in-time (monthly). Examples: Williamsport, PA
4. Rolling actuals	 Process: Capital charge allocated to customers each month using a rolling average of 3, 6, or 12 months of actuals. Examples: Unknown
5. Lagging actuals	 Process: Capital charge allocated to customers during the year based on the prior year or an average of 3 prior years of actuals. Example: Dayton Water (3-year average)

Additional feature

A. 65% to 100% capital charge

- **Process:** All capital costs would be billed on a capital charge basis.
- **Examples:** City of Wilmington, DE

Advantages vs. Disadvantages

Option #1: Status quo

Advantages

- Familiar process.
- Certainty to customers.
- Relatively less administratively burdensome than other options.
- Customers who deliver <u>more</u> flow/loads than budgeted may save on the capital charge portion of the bill.

- Equity. Does not tie directly to actual usage, which is less equitable for customers.
- Customers who deliver <u>less</u> flow/loads than budgeted may pay more on the capital charge portion of the bill.

Option #2: Year-end true-up

Advantages

- More equitable than status quo.
- Relatively easy to administer compared to other options besides status quo.
- Similar to existing smoothing procedure.
- Common industry practice.

- Could lead to surprises in customer year-end bills.
- Adds additional administrative effort (modest).
- Potential billing process changes.
- Reduces customer certainty about annual bill.
- Variation between budget and actuals may equalize over time, so annual efforts may not yield much net change for customers.

Option #3: In-year true-up (or actuals)

Advantages

- Improves equity compared to status quo option.
- Could result in lower magnitude changes than a year-end true-up.

- Increases month to month customer variability.
- Adds administrative effort (modest).
- Requires billing process changes.
- Reduces customer certainty about annual bill.

Option 4: Rolling actuals

Advantages

- Potential for improved equity compared to status quo option.
- Reduces customer bill variability because units are smoothed.

- Not as equitable as other options since units are from a different period than capital costs.
- Reduces customer certainty about annual bill.
- Could introduce seasonality issues (recommend rolling 12 months to avoid).
- Not a common industry practice.
- Adds administrative effort (modest).
- Requires billing process changes.

Option #5: Lagging actuals

Advantages

- Certainty to customers because units are known in advance.
- Relatively easy to administer compared to other options besides status quo.

- Not as equitable as other options since units are from a different period than capital costs.
- Adds administrative effort (modest).
- Requires billing process changes.

Option A: 65% to 100% capital charge

Advantages

- Improves revenue stability for NEW Water.
- Improves bill predictability for customers (eliminate 35% variable capital cost recovery in unit rates).
- Could be paired with any prior option.
- Moves capital fixed costs to full capital charge basis.

- End-users have less ability to impact their bill in a given year.
- May increase demand for some form of true-up because capital charges are higher.
- Sends less of a conservation signal for water and energy by reducing variable unit rates.

Discussion

Respond at PollEv.com/mattwittern723

Which capital charge billing options would you most like to study further? Please rank the following.

Next Steps

Next Steps

Task 1: Kickoff Meeting & Workshop #1

Task 2: Options Analysis & Workshop #2

Task 3: Path Forward Selection & Workshop #3

Task 4: Commission Meeting

Task 5: Summary Reporting

Task 6: OPTIONAL - Model Incorporation & User Guide Updates

Example Analysis Views

Option #1: Table of impacts (\$ and %)

Customer	Current Capital Charge	Option 1 Capital Charge	\$ Change	% Change
Customer 1	\$#	\$#	∆\$#	+-X%
Customer 2	\$#	\$#	∆\$#	+-X%
Customer 3	\$#	\$#	Δ\$#	+-X%
Customer 4	\$#	\$#	Δ\$#	+-X%
	\$#	\$#	Δ\$#	+-X%
Customer n	\$#	\$#	Δ\$#	+-X%
Totals	\$#	\$#	∆\$#	+-X%

5% 4.3% 4% 3.5% 3% 2% 1% 0% Customer 1 Customer 2 Customer 3 Customer 4 -1% -2% -3% -2.5% -4% -5% -4.5%

% Change in Bills from Current vs. Option 1

■ Customer 1 ■ Customer 2 ■ Customer 3 ■ Customer 4

Option #1

Histogram of % bill changes

Option #1

Share of costs (%)

37

\$12 \$10 \$8 \$ Millions \$5.8 \$5.9 \$6.0 \$6.0 \$6 \$4 \$2.8 \$3.0 \$3.0 \$3.1 \$2 \$1.5 \$1.1 \$1.0 \$0.9 \$0 Current Option 1 Option 2 Option 3 Customer 1 Customer 2 Customer 3

Mix of Costs by Customer and Option

All Options

Histogram comparing distribution of costs across options

Thank you!

Contact: John Mastracchio 518 391 8944 / jmastracchio@raftelis.com

Contact: Zachary Green 518 316 2079 / zgreen@raftelis.com