GREEN BAY FACILITY & DE PERE FACILITY 50-Year Vision – Session 1

VIRTUAL SUGGESTIONS

Moderator

Presenters

Virtual Backups

- Slide Deck
- Call In

Contact with Problems

WORKSHOPS PREVIEW

Session 1: NEW Water Infrastructure Drivers

Session 2: Future of Nutrient Removal

Session 3: Water Reuse, Energy Management and Resource Recovery

Session 4: Emerging Concerns and Areas

Session 5: Consolidation of long-term drivers

AGENDA

Overview and Objectives

Infrastructure Update

Risks and Opportunities

Discussion

Overview & Objectives

Who from the consultant team is participating in these sessions?

NEW Water

PROJECT LEADERSHIP

PLANNING LEAD

DR. LEON DOWNING

ENGINEER EVALUATIONS
NATHAN CASSITY

PROJECT MANAGER
PAUL BOERSMA

PLANNING AND PROJECT MANAGER ASSISTANCE

DAVE DIEHL

TECHNICAL ADVISORS

GENERAL PLANT PROCESS
STEPHEN ARANT

DR. JAMES BARNARD
DR. GEORGE WELLS

OVERALL PLANT
IMPROVEMENTS
GARY CRESSEY

Visioning Sessions

Dr. James Barnard

Dr. George Wells

Dr. Glen Daigger

TASK A UNDERSTANDING ISSUES TASK B DRAFT 50-YEAR CONCEPTUAL PLAN

SOLUTION EVALUATION

TASK D CONSENSUS BUILDING

MANAGEMENT

JEFF STILLMAN

TASK E SOLUTION DEVELOPMENT

SUBJECT MATTER EXPERTS FOR SUPPORT TOOLS

HYDRAULIC MODELING WENDY RAISBECK AMANDA BURNS (QC)

PROCESS ENGINEER
AND MODELING
ERIC REDMOND

FLOWS AND LOADS
SANDY KIMMLER

REGULATIONS STEPHEN ARANT NATHAN CASSITY

INFRASTRUCTURE GAPS
NATHAN CASSITY

ENGINEERING

PUMP STATIONS WENDY RAISBECK

HEADWORKS
ALLEN HOWE
LUCAS BOTERO
GARY HUNTER

BLOWERS
JEFF WILLS

ODOR CONTROL

PROCESS & ENERGY

SUBJECT MATTER EXPERTS FOR EVALUATIONS AND RECOMMENDATIONS

SIDESTREAM TREATMENT

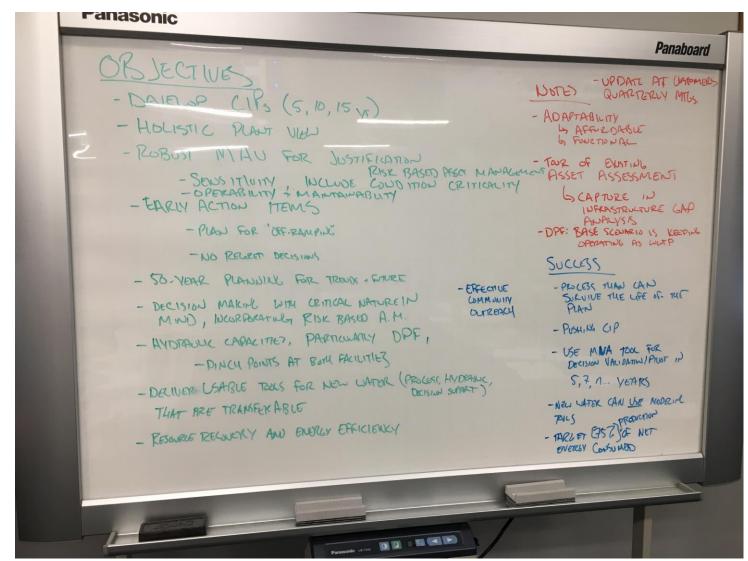
DR. LEON DOWNING

NUTRIENT REMOVAL DR. LEON DOWNING

RESOURCE RECOVERY

GREG KNIGHT

ENERGY MANAGEMENT


JAY KEMP

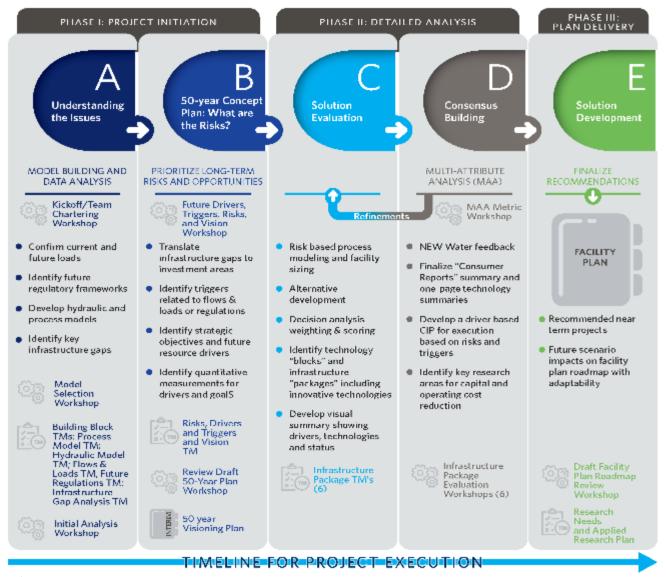
APPLIED RESEARCH
DR. LEON DOWNING

ASSET OPERATIONS PLAI

OPERATIONS PLANNING
DENNIS DINEEN
JEREMY CRAMER

What did we talk about back at the kickoff?

How do we take this list up a level for a Facility Plan?


Objectives

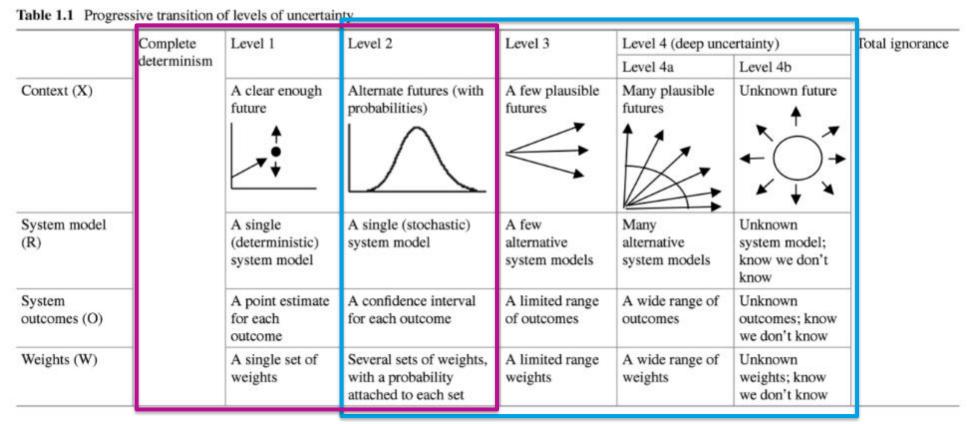
- Develop a vision for development of the GBF and DPF over the coming 50 years that delivers extraordinary value to the Green Bay community.
- 2. Understand new-term issues and develop plans to address them while retaining future flexibility.
- 3. Identify actions to be taken now to mitigate future risks and to create future opportunities.
- 4. Assist New Water to building increased internal capacity, broadly viewed (e.g. staff, capabilities, financial, stakeholder support).

Key Success Factors

- 1. Clearly understand the current situation.
- 2. Understand the broad goals and objectives of New Water internal and external stakeholders.
- 3. Understand the range of future issues and possibilities, including uncertainties.
- 4. Understand constraints and how they can be relaxed

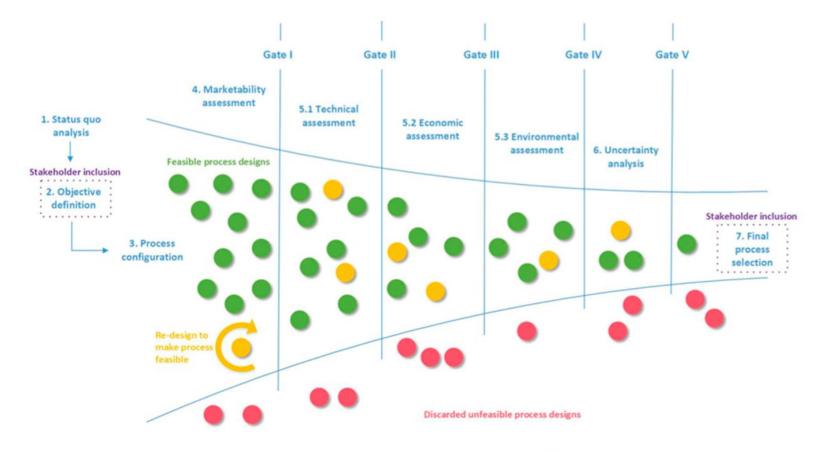
The facility plan approach consists of five key tasks

- ✓ TM 2.1
- ✓ TM 2.2
- ✓ TM 2.3
- ✓ TM 2.4
- Visioning sessions
- MUA Criteria
- TM 3.1

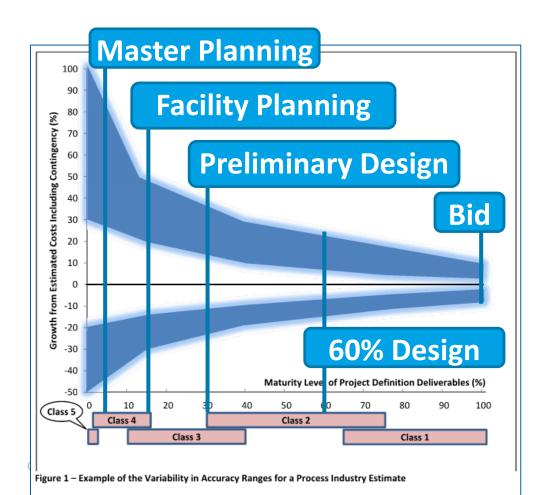

- ✓ TM 4.1
- ✓ TM 4.2
- TM 4.3, 4.4, 4.5, 4.6

• TM 2.5 and 2.6

In today's world, the water industry is facing a range of drivers for facility improvements and expansion


The NEW Water Facility Plan is a combination of facility planning and master planning

Facility Planning


Master Planning

A potential goal is to keep your options flexible as long as possible

Figure 1. Funnel development and stage gating model adapted from [26] to make it specially applicable for water resource factory (WRF) process design purposes.

Identifying cost uncertainty during planning is a key consideration

Total Probable Construction Cost

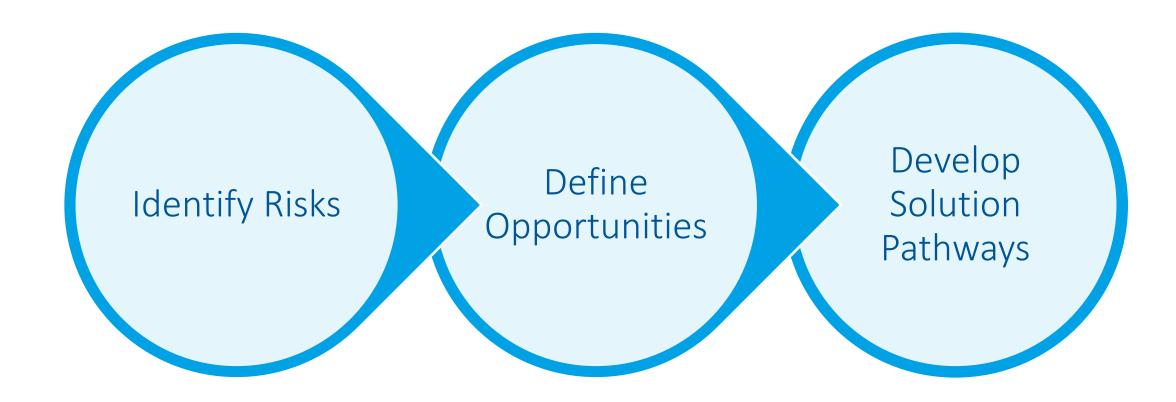
x Accuracy Range (+/-%)

= Range of Likely Construction Costs

Total Probable Construction Cost Range

High Range

Mid Range x 125%


Mid Range

Low Range

Mid Range x 85%

(from AACE International Recommended Practice No. 18R-97)

How should we be thinking about the next five sessions?

Risks and opportunities will feed into the structure of the MUA

Infrastructure Update

Adaptive Management

- Alternative compliance approach selected to address TSS and Phosphorus compliance
- Focused on achieving water quality in Fox River
- 20-year plan (four permit terms)
- Approval to continue at each permit renewal
- Silver Creek Pilot
- Ashwaubenon Creek and Dutchman Creek Full-Scale Implementation
- Submitted plan is currently under review by Wisconsin DNR

Adaptive Management

- Achieving mass based TSS and Phosphorus limits required if no longer following Adaptive Management or Fox River does not achieve water quality after four permit terms
- Hopeful that Adaptive Management is successful in helping to achieve water quality goals
- Hopeful that Adaptive Management or other watershed approaches have life beyond 20-years

Resource Recovery & Electrical Energy (R2E2)

- Digesters running well
 - Bio-gas cleaning performing well
- FBI running well
 - Concern with one part of the incineration train shutting down the complete system (redundancy)
- Air pollution control running well
 - Mercury removal system (granulated activated carbon) performing well, but concerns with potential future issues (thermal excursion)
 - Potential for future more stringent limits
- Concern with continued landfill acceptance of sludge during FBI outages
- Additional digested sludge storage desired

Resource Recovery & Electrical Energy (R2E2)

- Energy Recovery
 - Currently generating approximately 40% of electrical usage
 - Bio-gas engine reliability has been an issue
 - Have not made it one complete month with both engines running
 - High strength waste (HSW) program has done well
 - Currently getting enough HSW to run one engine almost exclusively on bio-gas
 - More HSW sources are available
 - Have limited additional HSW accepted due to lack of reliable engines
 - Additional gas storage would be a benefit

Resource Recovery & Electrical Energy (R2E2)

							R2	E2 ENER	RGY - CU	RRENT Y	EAR 2020)							
							NEW			REEN BA	Y FACILI	TY							
			jas Generated			ļ		Electricity Us							tural Gas Used				
	Generators Flare			<u> </u>		Purchased Generated					Incineration	Heating Bo		Thermal Oil					
	Total (CCF)	Total (CCF)	% of Total	Total (CCF)	% of Total	Total (MWH)	Total (MWH)	% of Total	Total (MWH)	% of Total	Total (CCF)	Total (CCF)	% of Total	Total (CCF)	% of Total	Total (CCF)	% of Total	Total (CCF)	% of Total
January	240,152	222,724	92.7	17,428	7.3	3,657	2,123	58.1	1,533	41.9	125,740	6,357	5.1	109,385	87.0	0	0.0	9,998	8.0
February	202,546	198,889	98.2	3,657	1.8	3,078	1,765	57.4	1,312	42.6	132,965	13,235	10.0	108,484	81.6	0	0.0	11,246	8.5
March	220,334	203,695	92.4	16,639	7.6	3,572	2,191	61.3	1,381	38.7	101,861	17,038	16.7	77,163	75.8	0	0.0	7,660	7.5
April May June	247,422	10,817	4.4	236,605	95.6	3,271	3,116	95.3	154	4.7	111,252	17,341	15.6	85,014	76.4	47	0.0	8,850	8.0
July August																			
September																			
October																			
November																			
December																			
			Co-Genera	tion Unit #3	(P-21)			Co-Generation Unit #4 (P-22)				High							
				Ga	s Consumpt							Gas Consumption			Strength Waste	Strength Struvite Waste Harvested			
	Monthly Run Time	Total Energy Generated		Bio-	Bio-gas Natural Gas	Monthly Run Total Energy Time Generated		Bio-gas Natural Gas		ral Gas	Received Harvested								
	(hours)	(MWH)	Total (CCF)	Total (CCF)	% of Total	Total (CCF)	% of Total	(hours)	(MWH)	Total (CCF)	Total (CCF)	% of Total	Total (CCF)	% of Total	Total (gals)	Total (lbs)			
January	212	412	43.660	41,815	95.8	1.845	4.2	580	1,121	189,062	180,909	95.7	8,153	4.3	1,588,734	0			
February	672	1,308	209,577	198,544	94.7	11,033	5.3	2	4	558	345	61.8	213	38.2	1,490,460	0			
March	600	1,168	174,736	167,743	96.0	6,993	4.0	110	213	36,619	35,952	98.2	667	1.8	1,869,090	0			
April	90	154	19,667	10,817	55.0	8,850	45.0	0	0	0	0	0.0	0	0.0	2,140,426	0			
May																			
June																			
July																			
August																			
September																			
	1							1							1		I		
October																			
October November December																			

Resource Recovery & Electrical Energy (R2E2)

									RGY - CUI										
		Di	0			1	NEW		SBMSD) - G	FREEN BA	Y FACILI	ΓY		N-					
	Bio-gas Generated Generators Flare					Electricity Used Purchased Generated				Natural Gas Used Incineration Heating Boiler Thermal Oil Boiler Co-Generation Units									
	Total	Generat			-	Total			1		T-1-1			<u> </u>				1	
	Total (CCF)	Total (CCF)	% of Total	Total (CCF)	% of Total	Total (MWH)	Total (MWH)	% of Total	Total (MWH)	% of Total	Total (CCF)	Total (CCF)	% of Total	Total (CCF)	% of Total	Total (CCF)	% of Total	Total (CCF)	% of Total
anuary	203,137	198,046	97.5	5,091	2.5	3,906	2,338	59.8	1,569	40.2	180,443	16,665	9.2	135,240	74.9	3,534	2.0	25,004	13.9
ebruary	140,071	140,070	100.0	1	0.0	2,993	1,927	64.4	1,066	35.6	153,521	11,724	7.6	126,258	82.2	25	0.0	15,514	10.1
larch	170,110	169,817	99.8	293	0.2	3,452	2,151	62.3	1,301	37.7	146,606	13,596	9.3	110,713	75.5	54	0.0	22,243	15.2
pril	185,616	182,596	98.4	3,020	1.6	3,337	2,065	61.9	1,272	38.1	88,598	12,110	13.7	63,544	71.7	0	0.0	12,944	14.6
l ay	222,958	210,895	94.6	12,063	5.4	3,692	2,153	58.3	1,539	41.7	49,808	13,135	26.4	29,111	58.4	0	0.0	7,562	15.2
une	232,606	215,927	92.8	16,679	7.2	3,304	2,067	62.6	1,237	37.4	22,818	13,109	57.5	1,410	6.2	0	0.0	8,299	36.4
uly	226,037	202,902	89.8	23,135	10.2	3,460	2,001	57.8	1,459	42.2	34,821	11,362	32.6	623	1.8	0	0.0	22,836	65.6
ugust	137,092	135,800	99.1	1,292	0.9	3,343	1,330	39.8	2,014	60.2	138,090	8,754	6.3	194	0.1	0	0.0	129,142	93.5
eptember	199,774	198,043	99.1	1,731	0.9	3,752	2,215	59.0	1,537	41.0	60,686	18,999	31.3	2,884	4.8	0	0.0	38,803	63.9
ctober	200,561	176,548	88.0	24,013	12.0	3,390	2,078	61.3	1,312	38.7	75,054	12,974	17.3	36,595	48.8	0	0.0	25,485	34.0
lovember	176,439	168,239	95.4	8,200	4.6	3,334	1,882	56.4	1,452	43.6	154,405	14,476	9.4	89,089	57.7	1	0.0	50,839	32.9
ecember	183,492	183,096	99.8	396	0.2	3,464	2,105	60.8	1,359	39.2	124,909	6,671	5.3	86,835	69.5	136	0.1	31,267	25.0
			Co Conoro	tion Unit #3	(D 24)					Co Con	oration Unit t	M (D 22)			High				
			CO-General		s Consumpti	ion			Co-Generation Unit #4 (P-22) Gas Consumption				Strength	Struvite					
	Monthly Run Time	Total Energy Generated	Total Energy Bio-gas			al Gas	Monthly Run Total Energy Time Generated				o-gas Natural Gas		ral Gas	Waste Harvested Received					
	(hours)	(MWH)	Total	Total	% of	Total	% of	(hours)	(MWH)	Total	Total	% of	Total	% of	Total (gals)	Total (lbs)			
			(CCF)	(CCF)	Total	(CCF)	Total			(CCF)	(CCF)	Total	(CCF)	Total		` `			
anuary	250	656	83,947	72,237	86.1	11,710	13.9	501	913	139,103	125,809	90.4	13,294	9.6	0	0			
ebruary	551	742	110,786	104,397	94.2	6,389	5.8	214	324	44,798	35,673	79.6	9,125	20.4	48,000	0			
/larch	411	654	95,247	84,680	88.9	10,567	11.1	415	646	96,813	85,137	87.9	11,676	12.1	144,000	0			
pril	385	635	93,937	87,409	93.1	6,528	6.9	371	636	101,603	95,186	93.7	6,416	6.3	395,610	0			
1ay	426	794	113,876	108,873	95.6	5,003	4.4	403	746	104,581	102,022	97.6	2,559	2.4	1,437,226	3,000			
une	465	875	138,847	132,933	95.7	5,914	4.3	191	362	85,379	82,994	97.2	2,385	2.8	1,452,782	5,000			
uly	454	813	122,492	110,930	90.6	11,562	9.4	363	646	103,246	91,972	89.1	11,274	10.9	1,594,174	0			
ugust	369	714	85,683	15,125	17.7	70,558	82.3	669	1,300	179,259	120,675	67.3	58,584	32.7	1,772,246	20			
September	281	545	78,763	64,101	81.4	14,662	18.6	510	992	158,083	133,942	84.7	24,141	15.3	1,547,606	0			
October	6	11	1,617	1,386	85.7	231	14.3	681	1,301	200,416	175,162	87.4	25,254	12.6	1,844,167	0			
lovember	585	1,138	163,260	121,996	74.7	41,264	25.3	174	314	55,818	46,243	82.8	9,575	17.2	1,647,279	0			

TM 2.1. Flows & Loads

Communities Served

GBF

- Allouez
- Ashwaubenon
- Bellevue
- Green Bay
- Hobart
- Howard
- Pittsfield
- Pulaski
- Scott
- Suamico
- Dyckesville
- Luxemburg

DPF

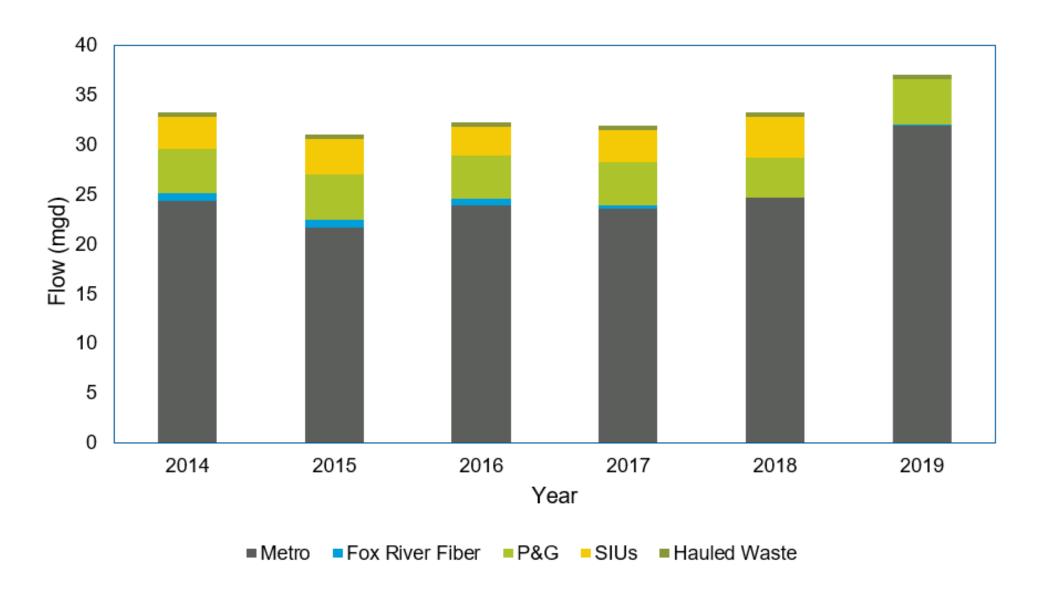
- Ashwaubenon
- De Pere
- Hobart
- Lawrence
- Ledgeview
- Rockland (annexed)

Top 10 Significant Industrial Users

NO.	COMPANY	PLANT	AVERAGE FLOW FROM 2014-2016 (GPD)	PEAK FLOW (MGD)
1	Procter & Gamble Paper Products Company	GBF	3.43	5.71
2	Fox River Fiber	DPF & GBF	1.11	1.23
3	JBS Green Bay	GBF	1.03	1.27
4	Ahlstrom-Munksjo (formerly Expera)	DPF	0.88	1,11
5	Bay Valley Foods, LLC	GBF	0.58	0.70
6	Green Bay Dressed Beef - Acme	GBF	0.54	0.73
7	Pioneer Metal Finishing	DPF	0.43	0.50
8	Georgia Pacific Consumer Operations, LLC	GBF	0.28	0.33
9	Sanimax USA, LLC.	GBF	0.24	2.03
10	Green Bay Nonwovens, Plant 1	DPF	0.23	0.25

Design Flows and Loads for Existing Facilities

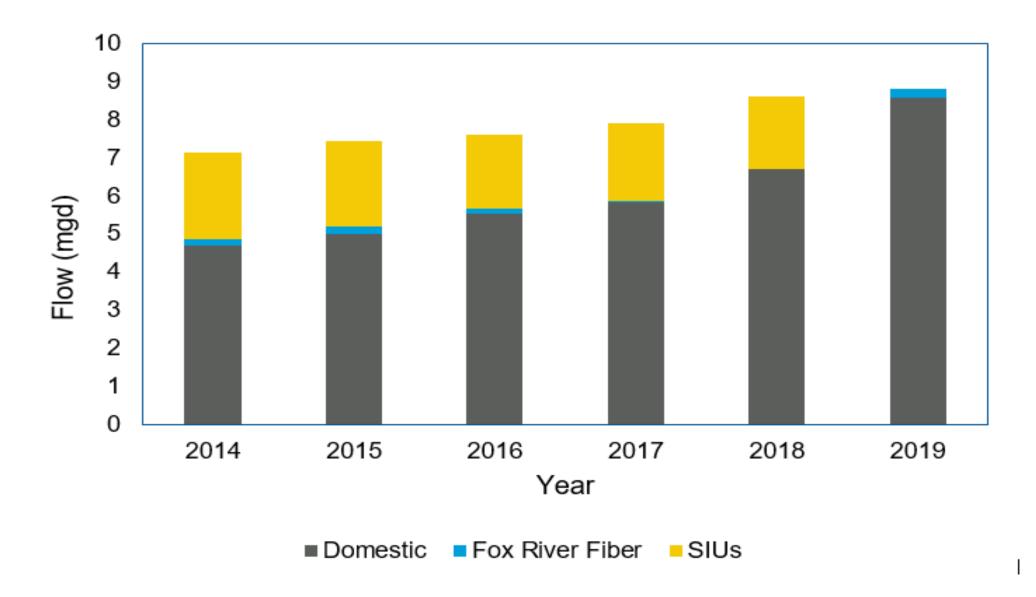
GBF


INFLUENT PARAMETER	AVERAGE	MAXIMUM MONTHLY	MAXIMUM WEEKLY	MAXIMUM DAILY
Flow (mgd)	32.4	49.2	65.5	96.6
BOD ₅ (ppd)	74,660	103,110	126,630	201,390
TSS (ppd)	84,580	89,460	110,360	200,240
NH ₃ -N (ppd)	5,610	6,555	6,990	12,500

)PF

INFLUENT PARAMETER	AVERAGE	DESIGN	PEAK HOUR
Flow (mgd)	9.5	14.2	30
BOD₅ (ppd)	23,500	41,000	41,000
TSS (ppd)	18,400	23,700	28,900

Sized for significant industrial loading


GBF Historical Flows

GBF Projected Flows and Loads

YEAR	INFLUENT PARAMETER	AVERAGE DAY	MAXIMUM 30-DAY RA	MAXIMUM 7-DAY RA	MAXIMUM DAY	PEAK HOUR
	Flow (MGD)	38.6	55.3	64.9	96.8	136.8
	BOD (ppd)	41,909	57,416	62,864	111,060	
2020	TSS (ppd)	52,406	73,368	113,197	276,703	
2020	NH ₃ -N (ppd)	3,858	4,938	5,748	17,050	
	TKN (ppd)	6,743	8,226	9,440	23,331	
	TP (ppd)	1,109	1,564	1,985	5,312	
	Flow (MGD)	43.2	62.8	72.5	104.4	148.8
	BOD (ppd)	44,239	60,608	66,359	117,234	
2040	TSS (ppd)	57,198	80,077	123,547	302,004	
2040	NH ₃ -N (ppd)	4,114	5,266	6,130	18,185	
	TKN (ppd)	7,233	8,824	10,126	25,025	
	TP (ppd)	1,195	1,684	2,138	5,722	

DPF Historical Flows

DPF Projected Flows and Loads

YEAR	INFLUENT PARAMETER	AVERAGE DAY	MAXIMUM 30-DAY RA	MAXIMU M 7-DAY RA	MAXIMUM DAY	PEAK HOUR
	Flow (MGD)	9.5	14.6	17.5	34.2	53.4
	BOD (ppd)	2,369	3,530	4,098	6,207	
2020	TSS (ppd)	1,918	3,913	5,064	14,270	
2020	NH ₃ -N (ppd)	105	161	182	272	
	TKN (ppd)	85	128	145	270	
	TP (ppd)	77	112	132	246	
	Flow (MGD)	11.0	18.4	21.4	38.0	57.3
	BOD (ppd)	2,369	3,530	4,098	6,207	
2040	TSS (ppd)	1,918	3,913	5,064	14,270	
2040	NH ₃ -N (ppd)	105	161	182	272	
	TKN (ppd)	85	128	145	270	
	TP (ppd)	77	112	132	246	

TM 2.2 Hydraulic Bottlenecks

GBF – Influent Pump Station Hydraulics

- 2040 peak hour flow of 149 MGD identified in Flows and Loads TM
- Pump station has 4 40 MGD pumps (firm capacity of 120 MGD)
- Recommended pumps upgrade: 4 50 MGD units
- Size of existing twin 48" forcemains is acceptable
- Interceptor system is currently being evaluated to look at equalization alternatives to limit flow to GBF

GBF – Gravity Hydraulics Evaluation

- Hydraulic model indicates significant upgrades and modifications required to convey the 149 MGD peak flow
- 20-year future condition, 10-year recurrence scenario (140 MGD) from Interceptor Master Plan identified as recommended maximum hydraulic capacity
 - Scenario meets critical criteria without significant upgrades
- To gain more hydraulic capacity, high priority major improvements include:
 - Primary clarifier inlet distribution channels and piping
 - Inlet channels to aeration basins

GBF - Critical Element Identification

- Critical elements evaluated to determine maximum capacity
- Critical elements include elements in violation of:
 - Freeboard
 - Velocity

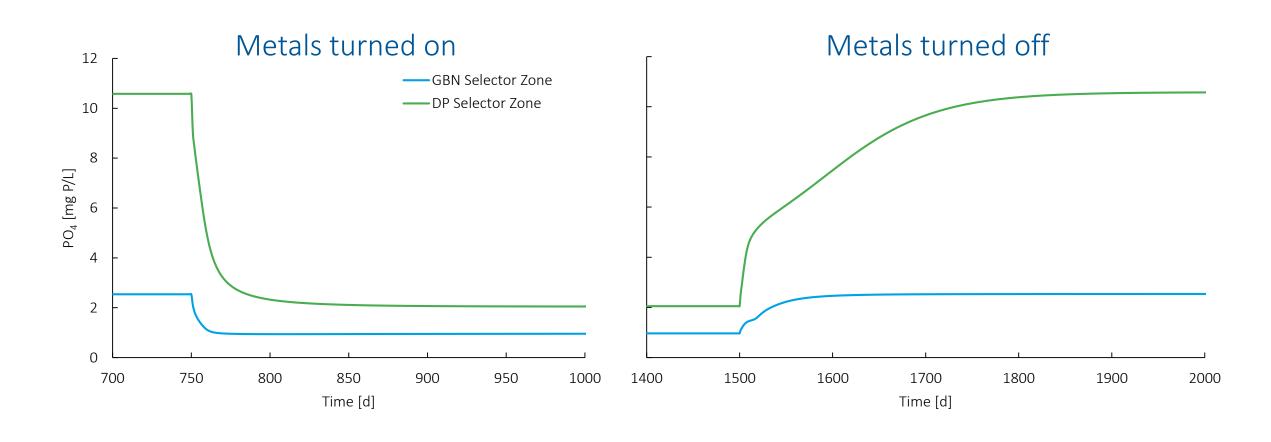
Condition	Current Conditions	20-Year Future	50-Year Future	Current Conditions	20-Year Future	50-Year Future
Recurrence Interval (years)	10	10	10	25	25	25
Flow (MGD)	128	135	148	151	159	175
Channel/ Pipe Velocity						
1 Primary Basin Influent Piping	5.27	5.55	6.07	6.19	6.51	7.16
Freeboard Limitations						
2 Bar Screen Bypass Channel	NO	NO	NO	NO	FLOOD	FLOOD
3 Bar Screen Channel	NO	NO	NO	NO	FLOOD	FLOOD
4 Channel Upstream of Influent Parshall Flume	NO	NO	NO	NO	NO	FLOOD
5 Channel Downstream of Influent Parshall Flume	NO	NO	FLOOD	FLOOD	FLOOD	FLOOD
6 Channel just Upstream of Dropbox into Primary Basin	NO	NO	NO	NO	NO	FLOOD
7 Dropbox into Primary Basin	NO	NO	NO	NO	NO	FLOOD
8 Channel Downstream of Primary Effluent Channel Gate	NO	NO	NO	NO	NO	FLOOD
9 Channel from Final Basin Discharge to Effluent Channel	NO	NO	NO	NO	NO	FLOOD
10 Final Effluent Channel Downstream of Final Basin	NO	NO	NO	NO	NO	FLOOD

GBF - Non-Critical Element Identification

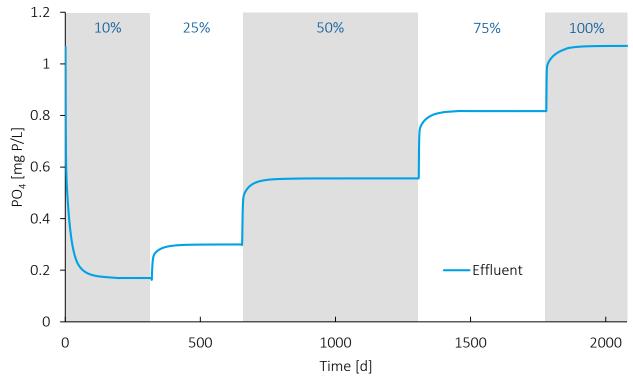
- Non-critical elements
 evaluated to confirm results
- Non-critical elements include elements in violation of:
 - Submerged flumes
 - Submerged weirs
 - Submerged gates

Condition	Current	20-Year	50-Year	Current	20-Year	50-Year
Condition	Conditions	Future	Future	Conditions	Future	Future
Recurrence Interval (years)	10	10	10	25	25	25
Flow (MGD)	128	135	148	151	159	175
Submerged Flumes						
Influent Parshall Flume	SUBMERGED	SUBMERGED	SUBMERGED	SUBMERGED	SUBMERGED	SUBMERGED
Aeration Splitter Parshall Flume	SUBMERGED	SUBMERGED	SUBMERGED	SUBMERGED	SUBMERGED	SUBMERGED
Effluent Parshall Flume	SUBMERGED	SUBMERGED	SUBMERGED	SUBMERGED	SUBMERGED	SUBMERGED
Submerged Weirs						
Control Weir into Headworks (CW-B2)	SUBMERGED	SUBMERGED	SUBMERGED	SUBMERGED	SUBMERGED	SUBMERGED
Bypass Weir (into Screen Bypass Channel)	NO	NO	SUBMERGED	SUBMERGED	SUBMERGED	SUBMERGED
Control Weir Upstream of Influent Parshall Flume (CW-B5)	SUBMERGED	SUBMERGED	SUBMERGED	SUBMERGED	SUBMERGED	SUBMERGED
Primary Basin V-notch Weir	NO	NO	SUBMERGED	SUBMERGED	SUBMERGED	SUBMERGED
Weir Upstream of Aeration Splitter Parshall Flume (CW-B9)	SUBMERGED	SUBMERGED	SUBMERGED	SUBMERGED	SUBMERGED	SUBMERGED
Weir Upstream of Contact Basin (CW-B21)	SUBMERGED	SUBMERGED	SUBMERGED	SUBMERGED	SUBMERGED	SUBMERGED
Weir Upstream of Final Basin Dropbox (SG-B94)	NO	NO	SUBMERGED	SUBMERGED	SUBMERGED	SUBMERGED
Final Basin V-notch Weir	NO	NO	SUBMERGED	SUBMERGED	SUBMERGED	SUBMERGED
Submerged Gates						
Gate Upstream of Primary Basin Influent Dropbox (SG-B8)	NO	SUBMERGED	SUBMERGED	SUBMERGED	SUBMERGED	SUBMERGED
Stop Gate at Discharge of Primary Basin (SG-B13)	SUBMERGED	SUBMERGED	SUBMERGED	SUBMERGED	SUBMERGED	SUBMERGED
Gate Downstream of Primary Effluent Channel (SG-B17)	NO	NO	NO	NO	NO	SUBMERGED
Final Basin Effluent Gate (SG-101)	SUBMERGED	SUBMERGED	SUBMERGED	SUBMERGED	SUBMERGED	SUBMERGE
Stop Gate Upstream of Chlorine Contact Basin (SG-B108)	SUBMERGED	SUBMERGED	SUBMERGED	SUBMERGED	SUBMERGED	SUBMERGED

DPF – Influent Pump Station Hydraulics

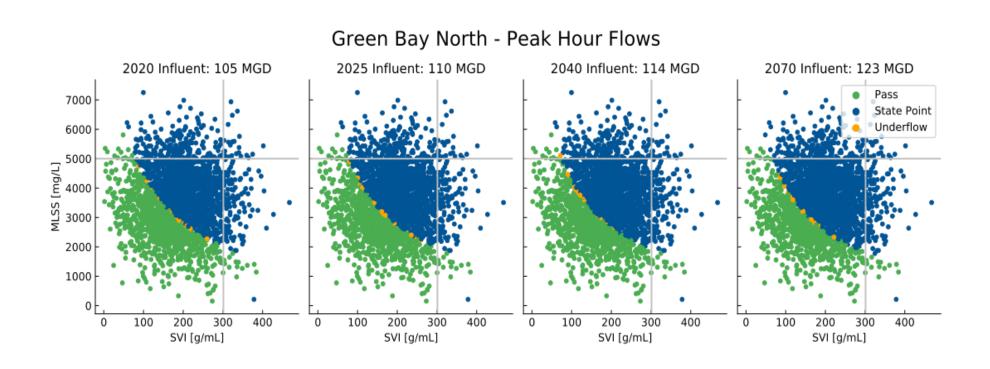

- 2040 peak hour flow of 57 MGD identified in Flows and Loads TM
- Pump station has 5 10 MGD pumps and 1 5 MGD pump (firm capacity of 45 MGD)
 - Can transfer 5 MGD to GBF interceptor
- Recommended pumps upgrade: 5 13 MGD units
- Size of existing twin 36" forcemains is acceptable

DPF – Gravity Hydraulics Evaluation


- Hydraulic model indicates significant upgrades and modifications required to convey the 57 MGD peak flow
- To gain more hydraulic capacity, high priority major improvements include:
 - New forcemain headbox, elevated grit removal tanks, and channels to aeration tanks
 - Clarifier expansion
 - Intermediates currently sized for 16 MGD, finals sized for 38 MGD
 - Filtration expansion already in design phase
 - UV disinfection expansion currently sized for 31 MGD

TM 2.3 Process Model

Insight into ChemP dynamics



Insight into ammonium and BioP

Note: Percentages listed are % recycle stream NH₄ load

Solids balance a key to capacity

TM 2.4 Regulatory Drivers

Potential drivers were categorized as near-term or long-term considerations

5 YEAR CONSIDERATION	10 YEAR CONSIDERATION	LONG-TERM CONSIDERATION
X		
X		
	X	
		X
		X
	X	
		X
X		
		X
X		
X		
X		
	X	
	X X	X X X X X X X X X X X X X X

What is the baseline assumption for the De Pere Facility?

Base assumption: continue to operate in current configuration

What needs to be done to maintain capacity, and at what capital cost?

Current projects + any additional needs (i.e. headworks, peak flow)

Alternative 1: Conversion to pump station

Alternative 2: Wet weather flow diversion to GBF

TM 2.5 Infrastructure Gap Analysis

Infrastructure Gap Analysis

 Objective: Review existing facilities at GBF and DPF related to age, operation, maintenance, performance, reliability, and efficiency

• Approach:

- 1. Evaluated existing equipment and original design approach
- 2. Developed design basis for future flows and loads
- 3. Incorporate asset management evaluations
- 4. Document identified issues to be addressed from above analysis

Infrastructure Gap Analysis

- GBF Priority issues to address in facility plan
 - Peak flow management
 - Age and reliability
 - Screening and grit removal performance and operation
 - Scum management
 - Thickening operation and performance for primary sludge and WAS
 - Sludge pumping and thickened sludge pumping maintenance

GBF Unit Process Review

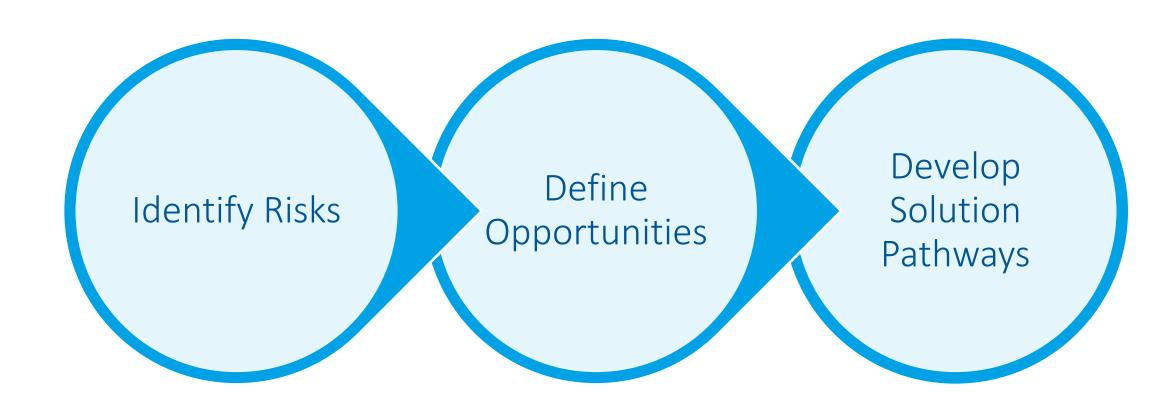
Unit Process	Identified Issues
Influent Pumping	Age, peak flow capacity
Screening	Capture performance, peak flow capacity
Grit Removal	Operation, capture performance
Primary Clarifiers	Age, peak flow capacity
Primary sludge pumping	Age, operation
Primary sludge thickening	Age, operation, maintenance, performance
Activated Sludge Aeration	Age, operation, energy
Secondary Clarifiers	Age, flow split, peak flow capacity
RAS and WAS pumping	(South Plant) Age, peak flow capacity
WAS Thickening	Age, operation, maintenance, performance

GBF Unit Process Review

(continued)

Unit Process	Identified Issues
Scum Handling (plant wide)	Operation, maintenance, capacity
Chlorine Disinfection	Peak flow capacity
Digestion	
Dewatering	Performance (solids content)
Drying	Performance (solids content)
Incineration	

Infrastructure Gap Analysis


- DPF Priority issues to address in facility plan
 - Peak flow management
 - Age and reliability
 - Screening and grit removal performance and operation
 - Scum management
 - Intermediate clarifier and final clarifier operation

	U D E I	Ini+	Dracacc	$D \cap V = O \setminus V$
--	---------	------	---------	----------------------------

Unit Process	Identified Issues
Influent Pumping	Age, peak flow capacity
Screening	Capture performance, peak flow capacity
Grit Removal	Age, operation, capture performance, peak flow capacity
Activated Sludge Aeration	
Intermediate Clarifiers	Age, peak flow capacity
RAS and WAS pumping	Age (both systems)
Second Stage Aeration	Not used
Final Clarifiers	Age, peak flow capacity
Tertiary Filters	Age, peak flow capacity
UV Disinfection	Peak flow capacity
Scum Handling (plant wide)	Operation, maintenance, capacity

Risks & Opportunities

How should we be thinking about the next five sessions?

How do we facilitate this discussion?

Example 1: Thickening

Risk: thickening capacity and operation limits R2E2 efficiency

Opportunity: new thickening equipment could address capacity, age, and operational issues

Solution pathway:

Step 1: replace existing thickening equipment to provide increased capacity and reliability

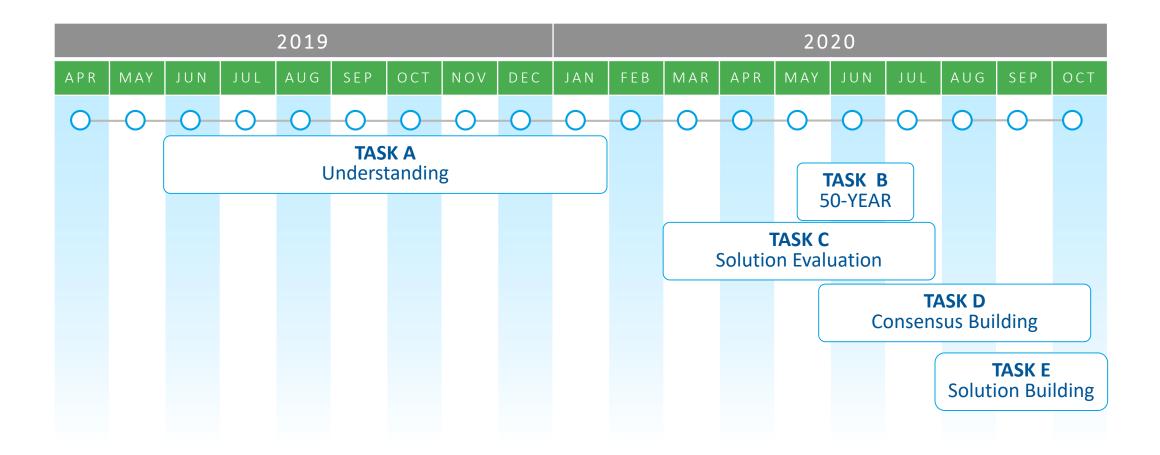
Step 2: upgrade screening and grit removal facilities to provide stable thickening operation

Example 2: Emerging Contaminant Removal

Risk: future regulations will require removal of an emerging contaminant, such as PFAS, from wastewater effluent

Opportunity: proactively monitor and evaluate treatment alternatives and environmental impacts

Solution pathway:


Step 1: continue to monitor progress in NACWA, WEF, CSWEA

Step 2: incorporate emerging contaminant testing into any tertiary technology treatment piloting

Step 3: if tertiary treatment is required for other compounds (TSS, TP), incorporate advanced oxidation into the plan for the technology

Project Schedule

GREEN BAY FACILITY & DE PERE FACILITY 50-Year Vision – Session 2

WORKSHOP NO. 1 REVIEW

Objectives

- 1. Develop a vision for development of the GBF and DPF over the coming 50 years that delivers extraordinary value to the Green Bay community.
- 2. Understand new-term issues and develop plans to address them while retaining future flexibility.
- 3. Identify actions to be taken now to mitigate future risks and to create future opportunities.
- 4. Assist New Water to building increased internal capacity, broadly viewed (e.g. staff, capabilities, financial, stakeholder support).

Key Success Factors

- 1. Clearly understand the current situation. (Workshop No. 1.)
- Understand the broad goals and objectives of NEW Water internal and external stakeholders. (Workshop No. 2 and following)
- Understand the range of future issues and possibilities, including uncertainties (Workshop No. 2 and following)
- 4. Understand constraints and how they can be relaxed (Workshop No. 2 and following)

WORKSHOP NO. 1 REVIEW

Workshop No. 1 - Where is NEW Water at:

- Adaptive Management uncertainty for future
- R2E2 Need "debottlenecking" and reliability of solids process, engine reliability
- Flows and Loads lack of peak flow both plants in 2040, lack of loading capacity at DPF in 2040
- Hydraulic Limitations peak flows exceed hydraulic capacity
- Future Regulatory Scenarios separated into near- and longterm considerations

WORKSHOP NO. 1 FEEDBACK

- Clear Articulation of Overall Workshop Goals
- Potential Need for Addition Small Group Discussions
- Re-Prioritize Workshops to Focus on DPF Because its <u>Risks</u> and <u>Opportunties</u> Drive <u>Solution Pathways</u>

A MINOR PIVOT

Session 1: NEW Water Infrastructure Drivers

Session 2: Future of Nutrient Removal De Pere Vision

Session 3: Water Reuse, Nutrients, Energy Management and

Resource Recovery

Session 4: Water Re-Use, Emerging Concerns and Areas

Session 5: Consolidation of long-term drivers

MEETING OBJECTIVES

- 1) Complete Infrastructure Gap Summary- Provde a Summary of Key NEW Water Infrastructure Challenges
- 2) DPF Evauation Obtain Feedback on:
 - a) Three Alternative Futures for DPF
 - b) Criteria By Which DPF will be Evaluated
 - c) Wet weather regulatory possibilities

AGENDA

Infrastructure Gaps

De Pere Facility Futures

Risks and Opportunities

Schedule

Infrastructure Gaps

GBF Unit Process Review

Unit Process	Identified Issues
Influent Pumping	Age, peak flow capacity
Screening	Capture performance, peak flow capacity
Grit Removal	Operation, capture performance
Primary Clarifiers	Age, peak flow capacity
Primary sludge pumping	Age, operation
Primary sludge thickening	Age, operation, maintenance, performance
Activated Sludge Aeration	Age, operation, energy
Secondary Clarifiers	Age, flow split, peak flow capacity
RAS and WAS pumping	(South Plant) Age, peak flow capacity
WAS Thickening	Age, operation, maintenance, performance

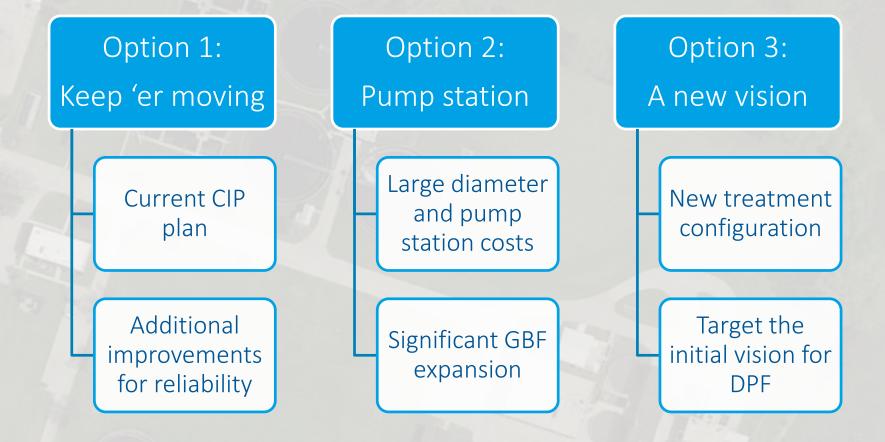
GBF Unit Process Review (continued)

Unit Process	Identified Issues
Scum Handling (plant wide)	Operation, maintenance, capacity
Chlorine Disinfection	Peak flow capacity
Digestion	
Dewatering	Performance (solids content)
Drying	Performance (solids content)
Incineration	

DPF Unit Process Review

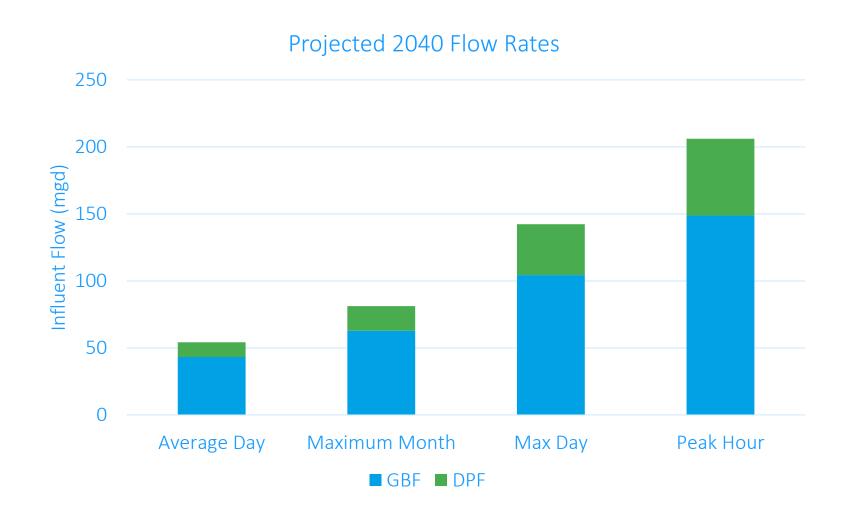
Unit Process	Identified Issues
Influent Pumping	Age, peak flow capacity
Screening	Capture performance, peak flow capacity
Grit Removal	Age, operation, capture performance, peak flow capacity
Activated Sludge Aeration	
Intermediate Clarifiers	Age, peak flow capacity
RAS and WAS pumping	Age (both systems)
Second Stage Aeration	Not used
Final Clarifiers	Age, peak flow capacity
Tertiary Filters	Age, peak flow capacity
UV Disinfection	Peak flow capacity
Scum Handling (plant wide)	Operation, maintenance, capacity

GBF AND DPF INFRASTRUCTURE SUMMARY


Both Plants

- 1) Peak Flow
- 2) Aging Assets
- 3) Screening and Grit Removal
- 4) Thickening
- 5) Scum Management

DPF

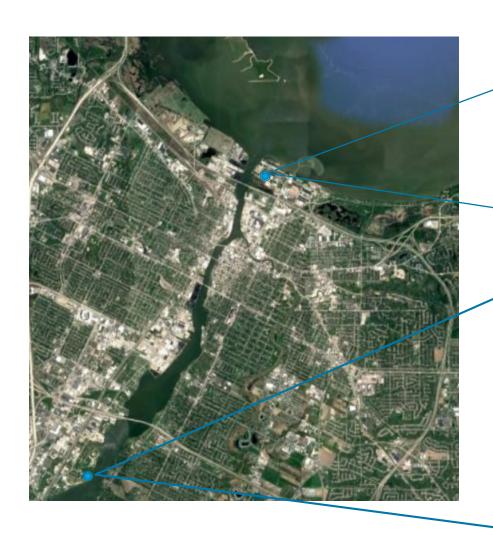

1) Not Operated as Designed and Not Designed to be Remote

De Pere Facility Futures

- Option 1: Likely 20-Year Investment for Headworks/AS Upgrades/Filters/UV > \$50 million
- Option 2: New Pump Station/Force Main/EQ Basin > \$30 million (without GBF Upgrades)
- Option 3: New wet weather plant > \$50 million


We discussed numbers for GBF and DPF last time

Combining DPF and GBF would require a 32% expansion by 2040...


... by 2070 (which includes the South Bridge growth), DPF would account for 50% of the load

FRAMING THE DPF EVALUATION

- 1) Is there a water quality benefit for two plants?
- 2) Is there a customer benefit for two plants? Customer benefit from one plant?
- 3) Does the DPF have Other Value?
- 4) What drives the DPF Operational Issues?
- 5) Understanding the Regulatory Possibilities for Wet Weather Treatment

Is there a water quality benefit to two discharges?

What are customer/community benefits from one or two plants?

Whiteboard exercise

What are the valuable assets at the De Pere Facility?

Whiteboard exercise

What drives the De Pere Facility to require more operational attention than planned?

Whiteboard exercise

Auxiliary Treatment Facilities

- Permitted use per 40 CFR 122.41(m)
- Wet-weather influent amenable to physical/chemical treatment
 - USEPA (2014), NPDES Experts Forum on Public Health Impacts of Wet Weather Blending (https://www.epa.gov/npdes/npdes-experts-forum-public-health-impacts-wet-weather-blending-documents)
 - USEPA (2007), Wastewater Management Fact Sheet, In-Plant Wet Weather Peak Flow Management, EPA 832-F-07-016
 - WEF (2006), Guide to Managing Peak Wet Weather Flows in Municipal Wastewater Collection and Treatment Systems
 - USEPA (2004), Report to Congress, Impacts and Control of CSOs and SSOs, EPA 833-R-04-001

Many pilot & full-scale studies by B&V and others support the use of physical/chemical auxiliary treatment facilities for wet-weather flows

40 CFR 122.41(m)(1)(i)

promptly submit such facts or information.

(m) Bypass—(1) Definitions. (i) Bypass means the intentional diversion of waste streams from any portion of a treatment facility.

(ii) Severe property damage means substantial physical damage to property, damage to the treatment facilities

(11) The Director may approve an anticipated bypass, after considering its adverse effects, if the Director determines that it will meet the three conditions listed above in paragraph (m)(4)(i) of this section.

(n) Upset—(1) Definition. Upset means an exceptional incident in which there is unintentional and temporary non-

Diversion means decreasing or cutting off flows to a process unit. Parallel treatment concept does not decrease flows to any portion of the treatment facility.

Do not use the terms diversion or bypass if providing auxiliary treatment

40 CFR 122 41 (m) (4) (i) (R) (4)

- (C) Violation of a maximum daily discharge limitation for any of the pollutants listed by the Director in the permit to be reported within 24 hours. (See §122.44(g).)
- (iii) The Director may waive the written report on a case-by-case basis for reports under paragraph (1)(6)(ii) of this section if the oral report has been received within 24 hours.
- (7) Other noncompliance. The permittee shall report all instances of noncompliance not reported under

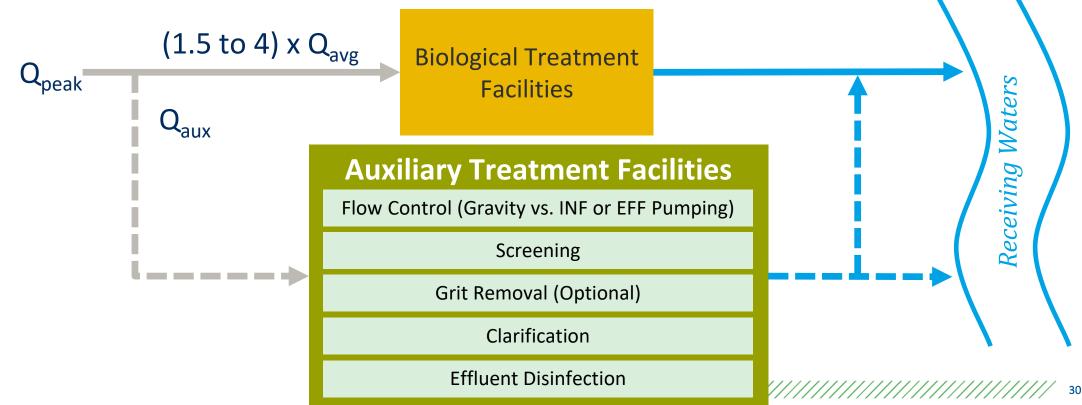
- (4) Prohibition of bypass. (i) Bypass is prohibited, and the Director may take enforcement action against a permittee for bypass, unless:
- (A) Bypass was unavoidable to prevent loss of life, personal injury, or severe property damage;
- (B) There were no feasible alternatives to the bypass, such as the use of auxiliary treatment facilities, retention of unit eated wastes, or maintenance during normal periods of equipment downtime. This condition is not

Use of auxiliary treatment facilities is not a bypass

Do not use the terms *diversion or bypass* if providing auxiliary treatment

- 40 Canage 1.2.2.2.4.1.1 contine the caused by delays in production.
 - (2) Bypass not exceeding limitations. The permittee may allow any bypass to occur which does not cause effluent limitations to be exceeded, but only if it also is for essential maintenance to assure efficient operation. These bypasses are not subject to the provisions of paragraphs (m)(3) and (m)(4) of this section.
 - (3) Notice—(i) Anticipated bypass. If

- erly designed treatment facilities, inadequate treatment facilities, lack of preventive maintenance, or careless or improper operation.
- (2) Effect of an upset. An upset constitutes an affirmative defense to an action brought for noncompliance with such technology based permit effluent limitations if the requirements of paragraph (n)(3) of this section are met. No determination made during adminis-

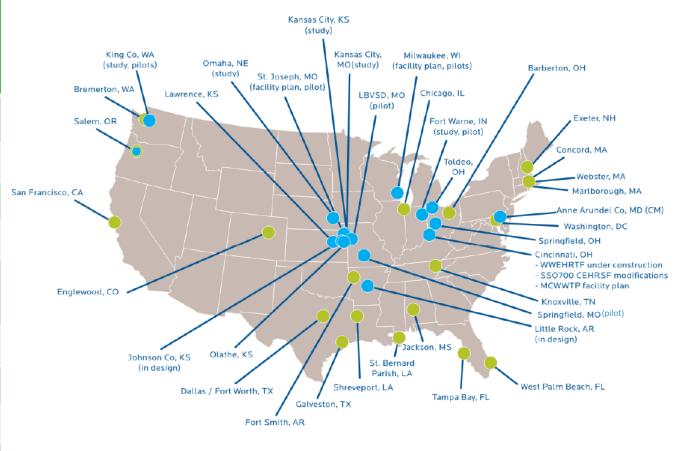

Parallel auxiliary treatment provides essential maintenance of biomass to assure efficient operation

Do not use the terms diversion or bypass if providing auxiliary treatment

After optimizing existing storage and treatment infrastructure, consider auxiliary treatment capacity
Optimize for <u>intermittent</u> wet-weather flows

- Complement inherent limitations of biological processes
- Long track record of success

• Small footprint alternatives. Collocated or satellite facilities.


Settling-Based	Filtration-Based	Flotation-Based
1. Conventional Settling -Rectangular, Circular, Square, RTB, Shaft	1. Shallow Granular Media	1. Conventional Floatables Removal -Skimmers, Scum baffles
2. Vortex (Swirl Concentrator)	2. Deep Granular Media	
3. Lamella Settler	3. Microscreens, Woven Media -Salsnes Filter, Eco MAT®Filter, Hydrotech Discfilter, SuperDisc™, Forty-X™ Disc, Quantum™ Disk	2. Dissolved Air Flotation (DAF)
4. Chemically Enhanced Settling		
a. Conventional Basin	4. Floating Media -MetaWater High Speed CSO Filter,	(5/ 11 /
b. Sequencing Batch- e.g. ClearCove Flatline EPT	BKT BBF-F HRF	
c. Lamella Settler HRC	5. Pile Cloth Media -AquaPrime™, infini-D™	3. Polymer-aided DAF
d. Solids Contact / Recirculation - e.g. DensaDeg®, CONTRAFAST®	6. Compressible Media -Fuzzy Filter™, WWETCO FlexFilter™	-Various suppliers
e. Ballasted Flocculation - Microsand (e.g. ACTIFLO®, RapiSand™, Densadeg XRC™) - Magnetite (e.g CoMag™)	7. Fixed-Film Contact -Biological Aerated Filter (BAF), BioFlexFilter™	4. Biocontact + DAF -Captivator®
5. Suspended Growth Contact -BIOACTIFLO™, BioMag™, Bio-CES		
Primary Removal Equivalent *	Small Footprint (High-Rate Treatment	t) Enhanced Removal

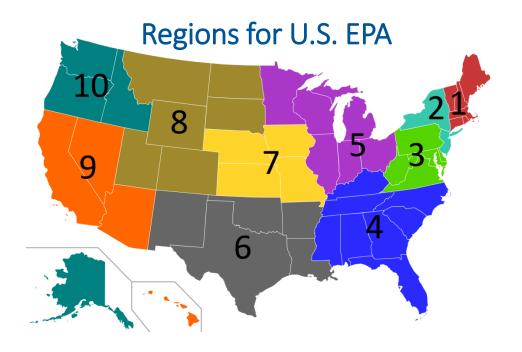
^{*} If coagulation/flocculation provided, HRT → EHRT (in some cases)

Pilot and Full-Scale EHRT Projects Include:

Full-Scale Auxiliary EHRT Facilities in the U.S.

EPA Region	State	
1	Massachusetts, New Hampshire	
2	New York	
3	DC, Maryland	
4	Florida, Georgia, Mississippi, Tennessee	
5	Illinois, Indiana, Ohio, Wisconsin	
6	Arkansas, Louisiana, Texas	
7	Kansas	
9	California	
10	Oregon, Washington	

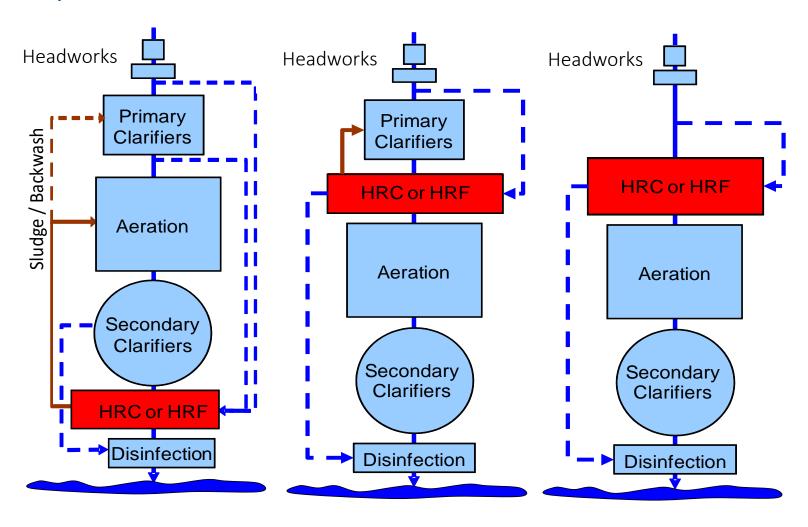
- 30+ operating in U.S. since ~1995
- 60+ worldwide


Other Relevant Points

Regulatory Acceptance

- EPA CSO Control Policy EHRT clearly allowed
- EPA SSO/blending policy Still under development
 - EHRT allowed in 8th Circuit Court states thanks to *ILOC v. EPA*. Case-by-case elsewhere. Precedents include KS, MA, NH, NY, NJ, OH, OR, TX, WI.
 - CRR v. EPA trying to apply ILOC v. EPA nationwide

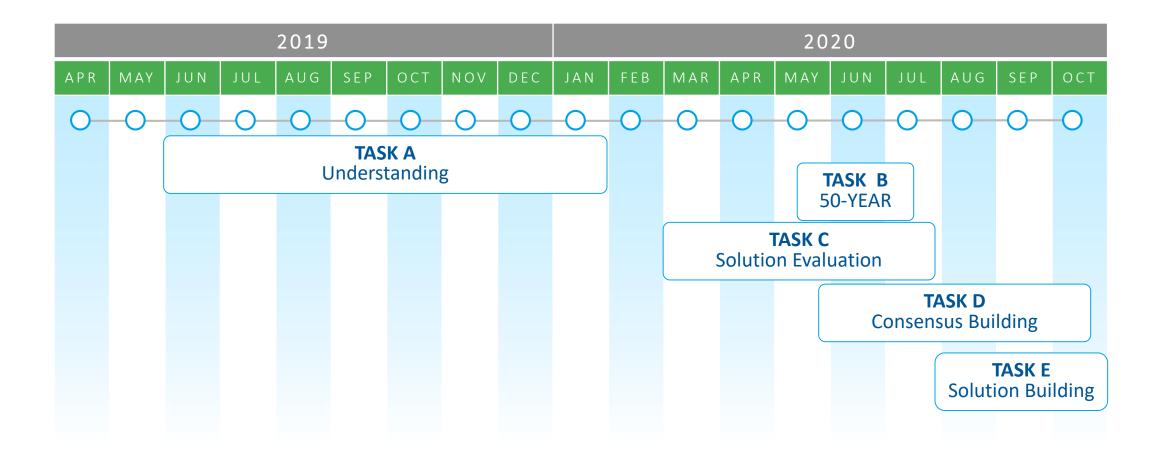
Dual-Use Potential


- Tertiary dual-use increases effluent TSS and P removal. HRF compatible with bio-P or chem-P removal without more coagulant demand.
- Primary dual-use increases raw TSS capture for carbon diversion, energy recovery and reduced secondary BOD load.

Circuits for U.S. Court of Appeals

Dual-Use Auxiliary Facilities

More WRRF benefit from capital investment than just infrequent wet weather

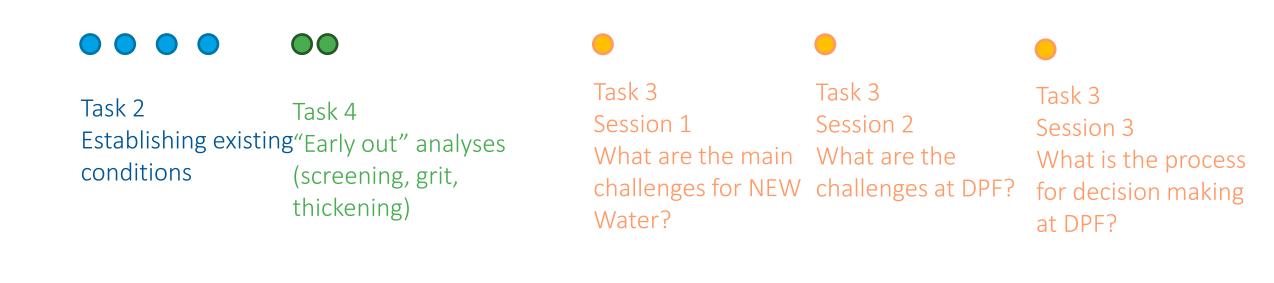

Risks & Opportunities

What are the keys risks and opportunities for the DPF future vision?

Project Schedule

GREEN BAY FACILITY & DE PERE FACILITY

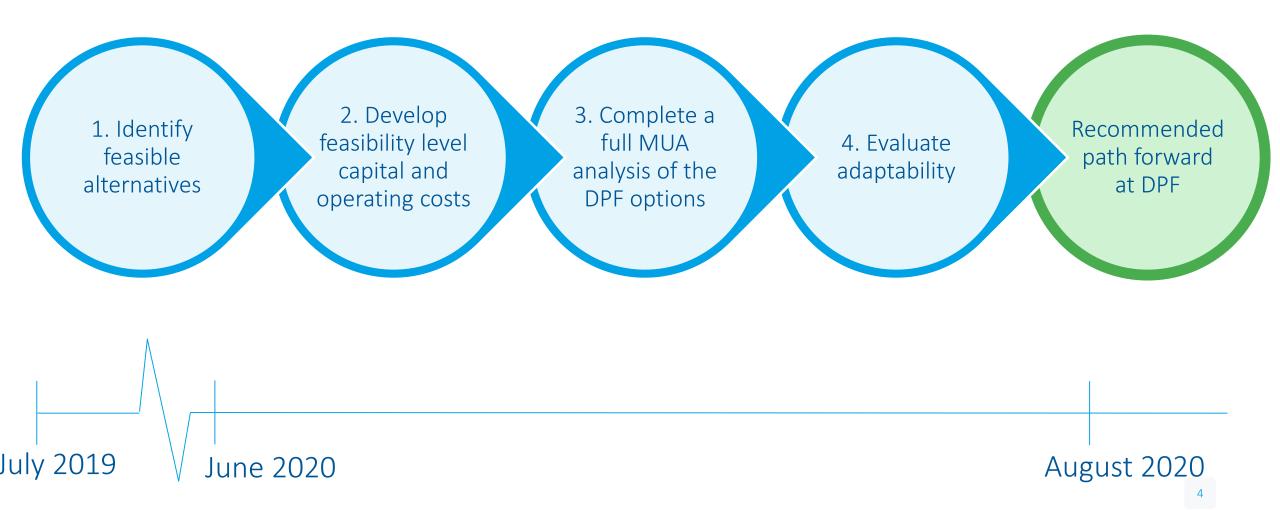
50-Year Vision – Session 3

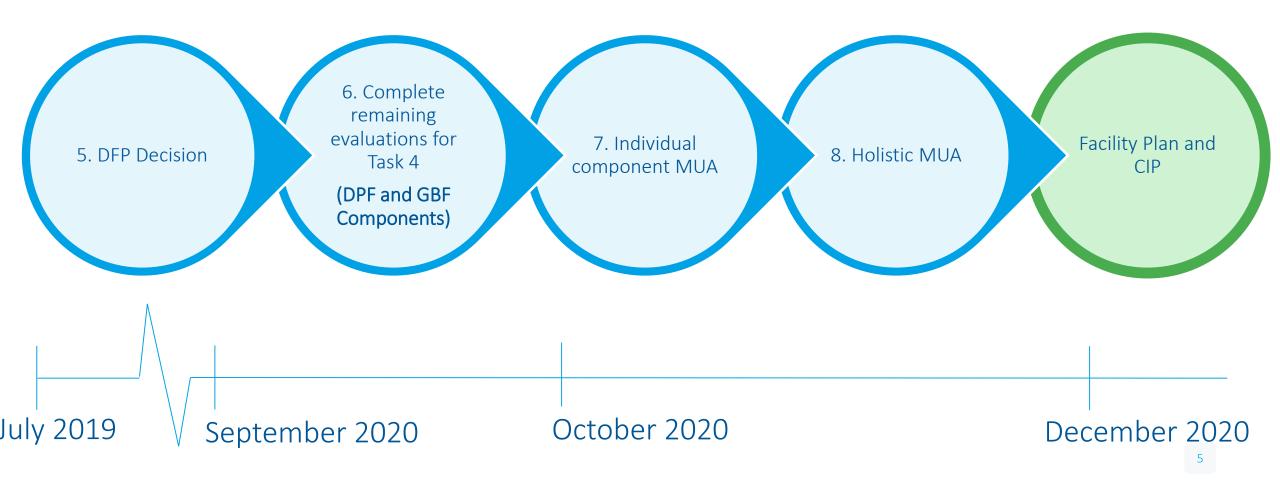

Today's Goals

- 1. Facility Plan schedule and decision making update
- 2.Concurrence on options for the DPF and GBF based on Session 2 comments
- 3. Set the groundwork for future MUA criteria

Facility Plan Roadmap

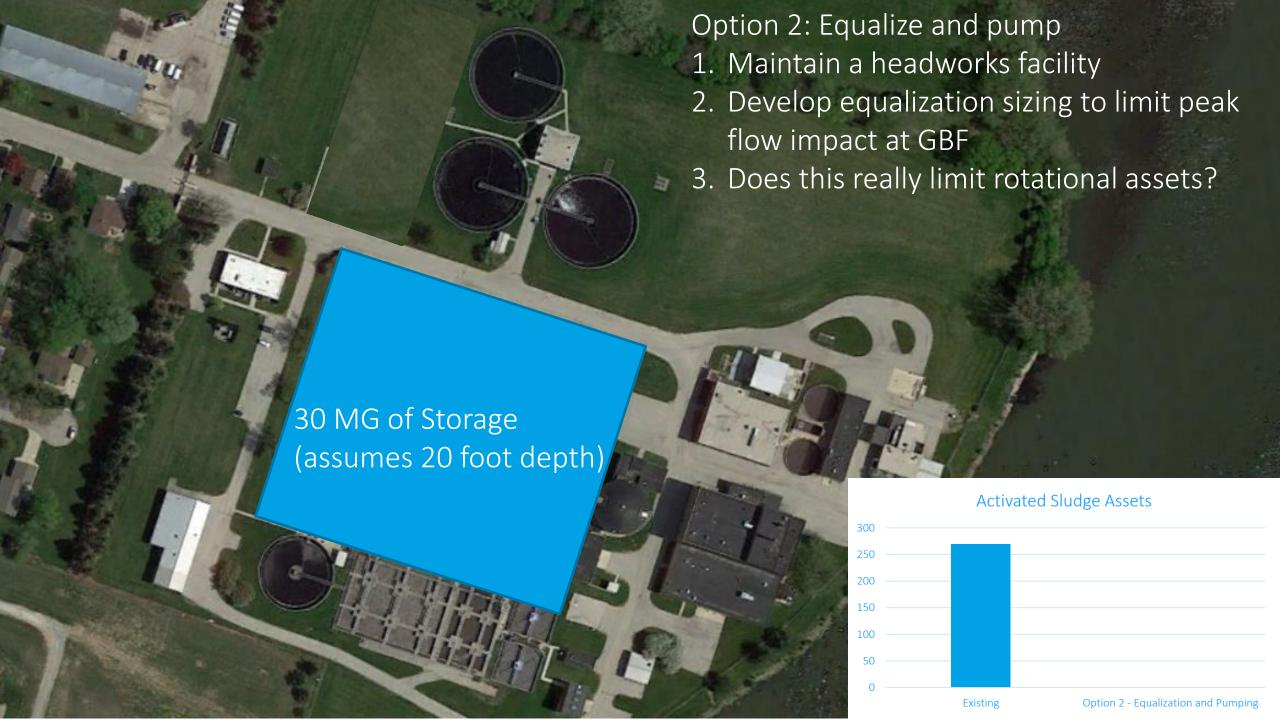
April 2020


July 2019

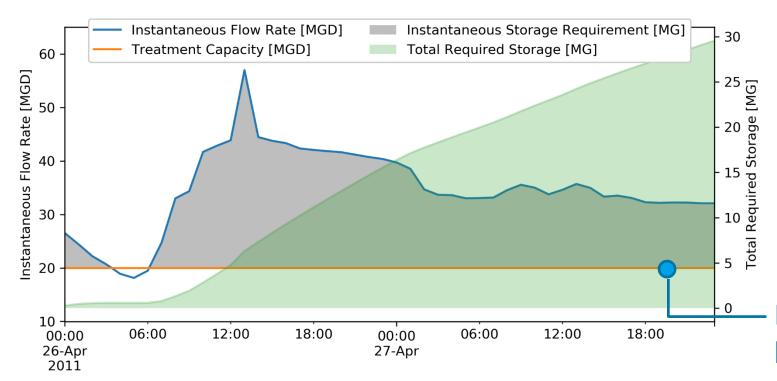

May 2020

June 2020

How do we make a decision on DPF?

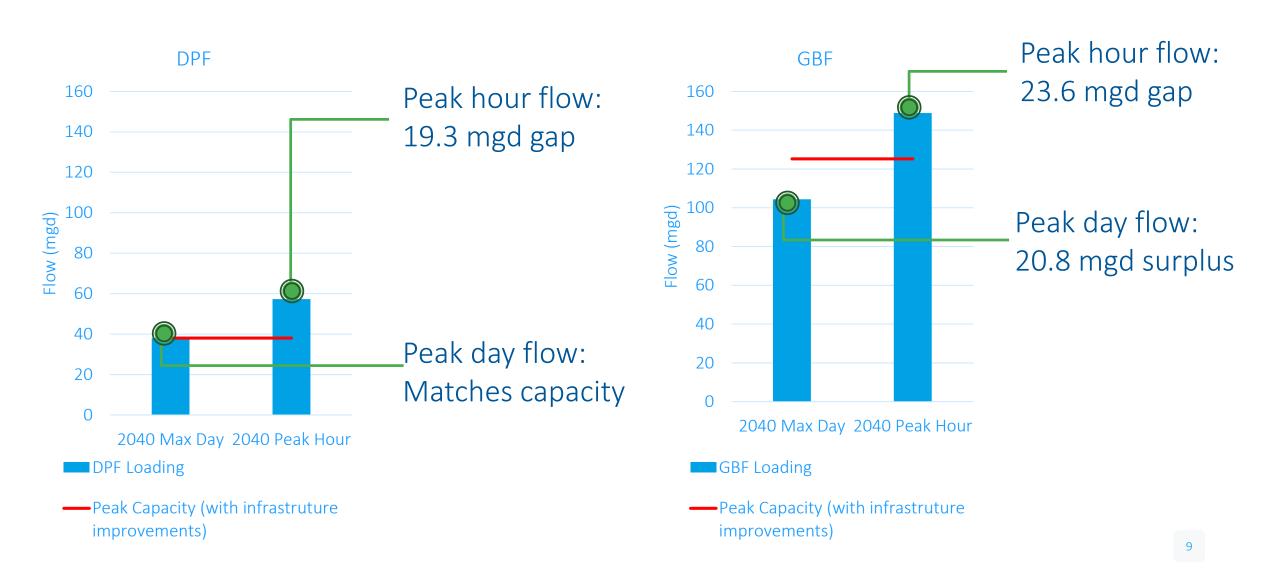


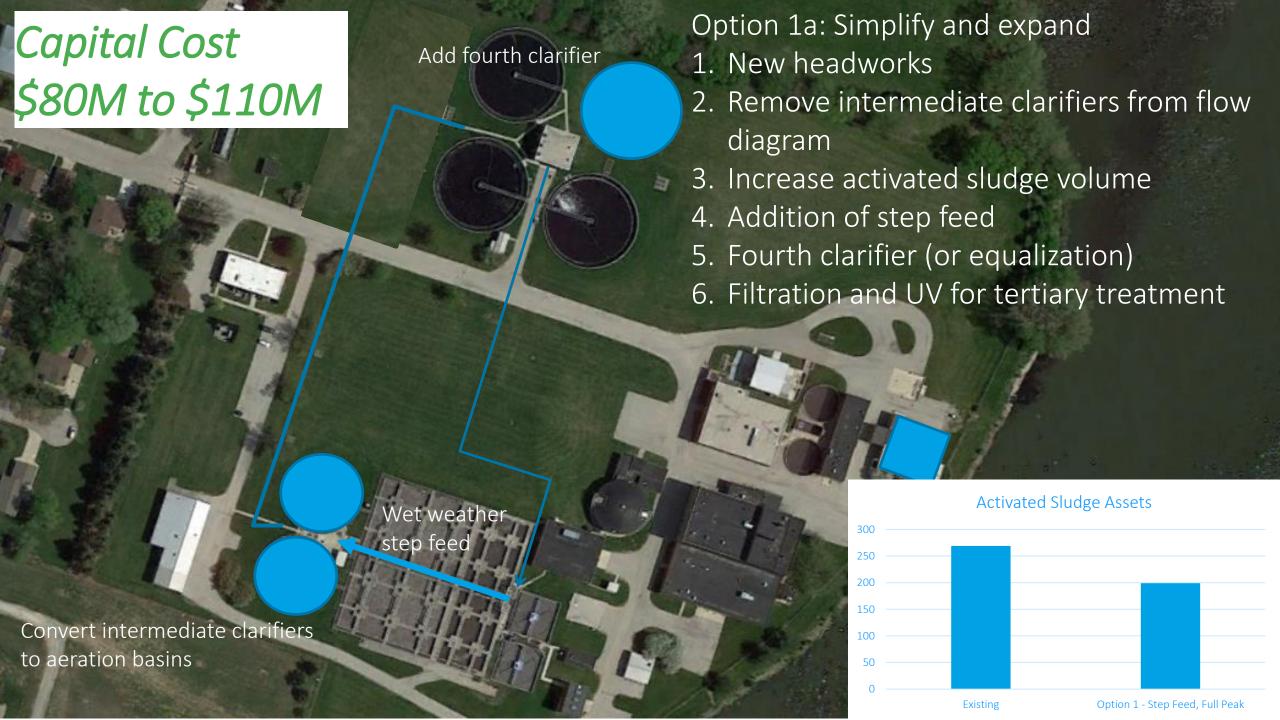
What happens after the DPF decision?

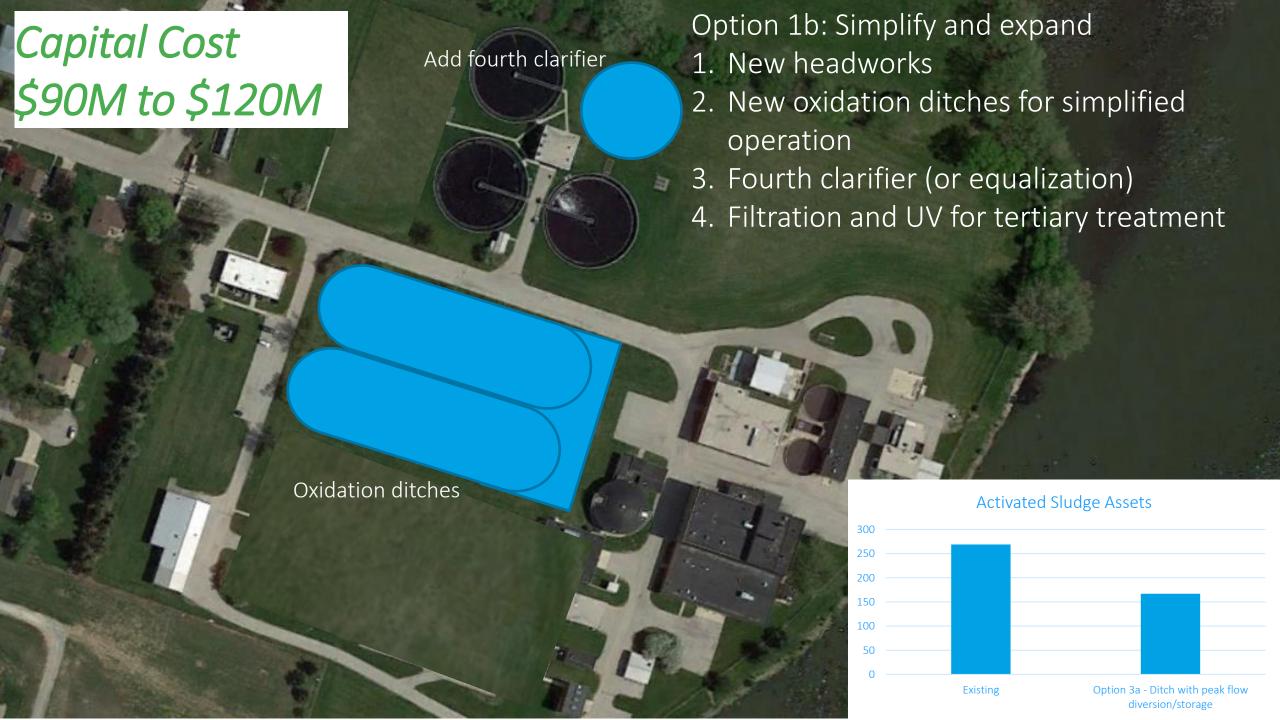


1. Identify feasible alternative pathways

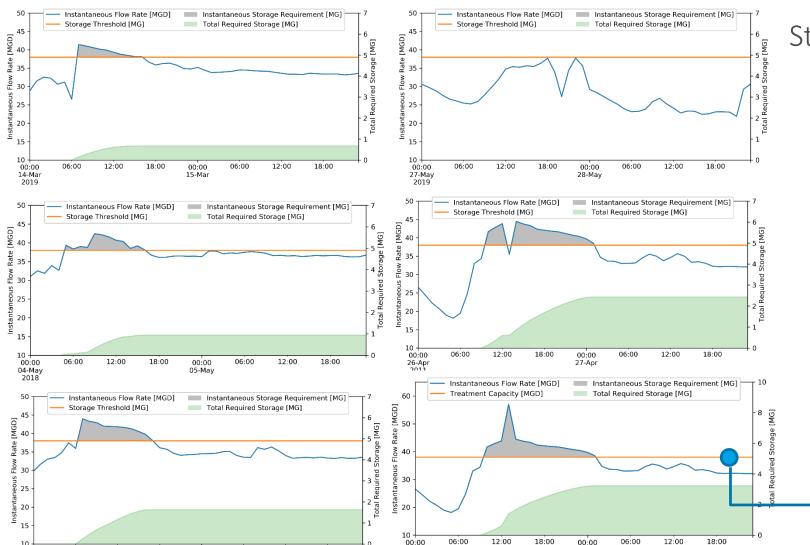
Option 1: Option 2: Option 3: Simplify and Pump Station A New Vision Expand Improved wet No DPF New Treatment weather Configuration operation operation Simplify number Significant GBF Target initial of unit processes expansion vision for DPF Opportunities for No DFP, but more Energy efficiency resource challenging GBF? opportunities recovery?


Storage at DPF could limit peak flow impact at GBF


Storage required: Likely more than 30 MG, but how much more?


Flow rate sent to GBF becomes the critical factor

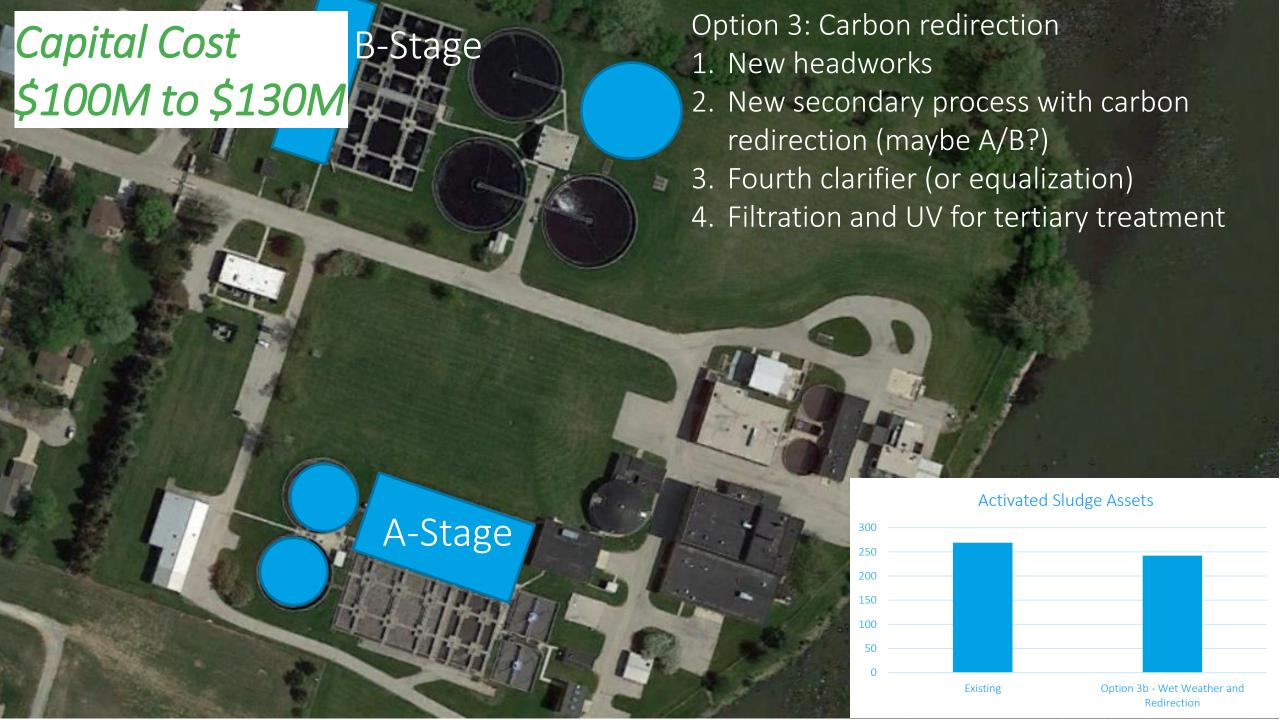

Step 1 - Understanding the context: Future Flows and Loads



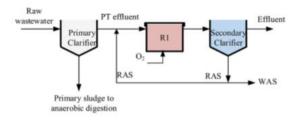
Is it possible to equalize instead of expanding?

26-Apr

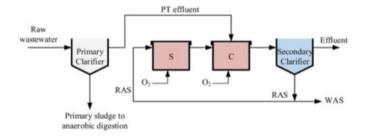
27-Apr

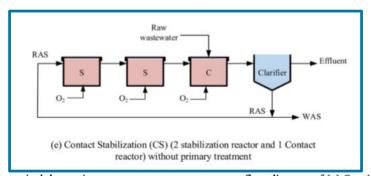

12:00

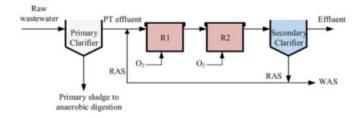
12:00


00:00 15-Dec 18:00

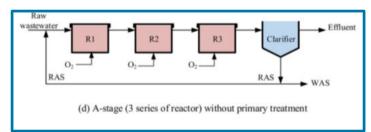
Storage range: 0.6 MG to 3.2 MG


Limits DPF to 38 MGD


What is A-stage treatment?

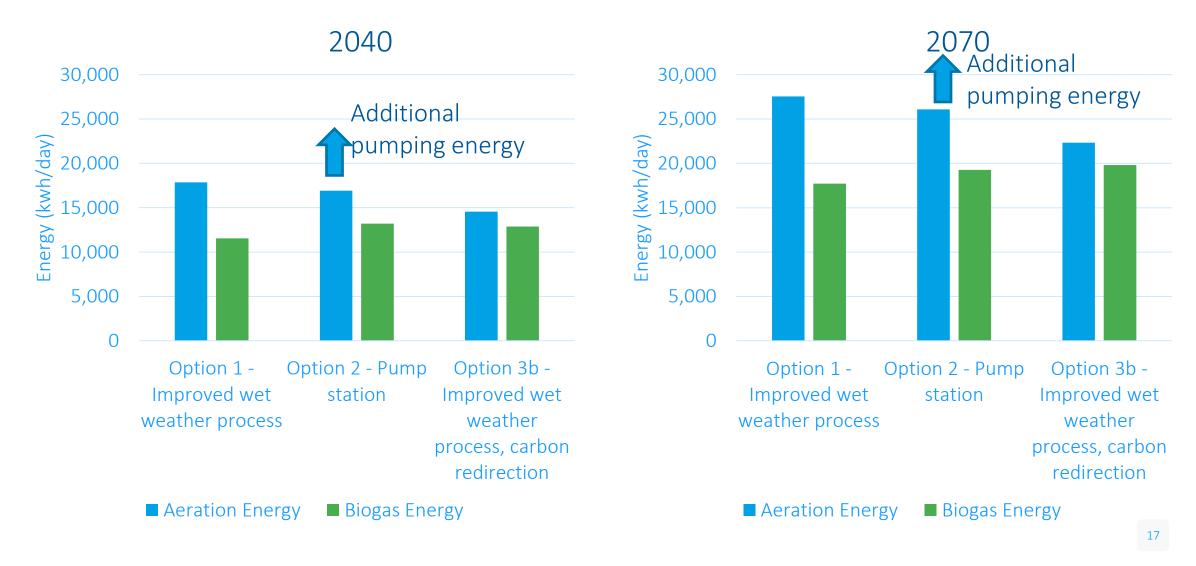


(a) Continuously Stirred Tank Reactor (CSTR) with primary treatment



(c) Contact-Stabilization (CS) with primary treatment

(b) Plug-flow (PF) reactor (2 series of reactor) with primary treatment



Symbol: PT-Primary Treatment, R-Reactor, S-Stabilizer, C-Contactor, RAS-Return Activated Sludge, WAS-Waste Activated Sudge

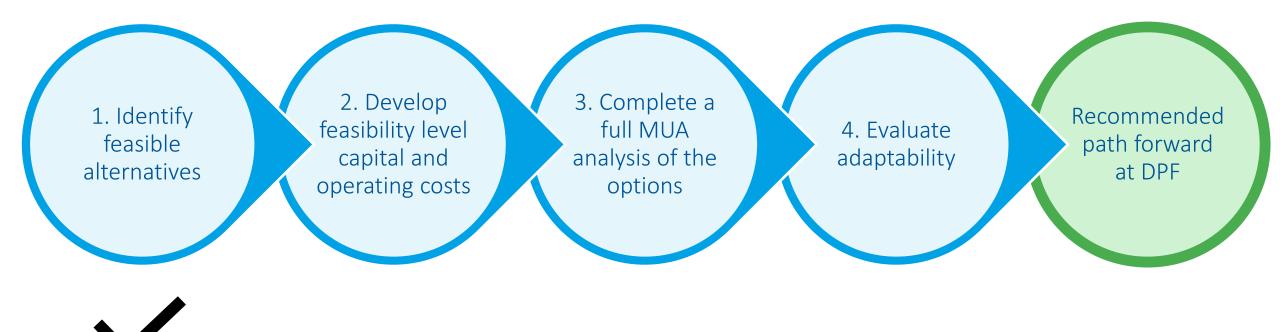
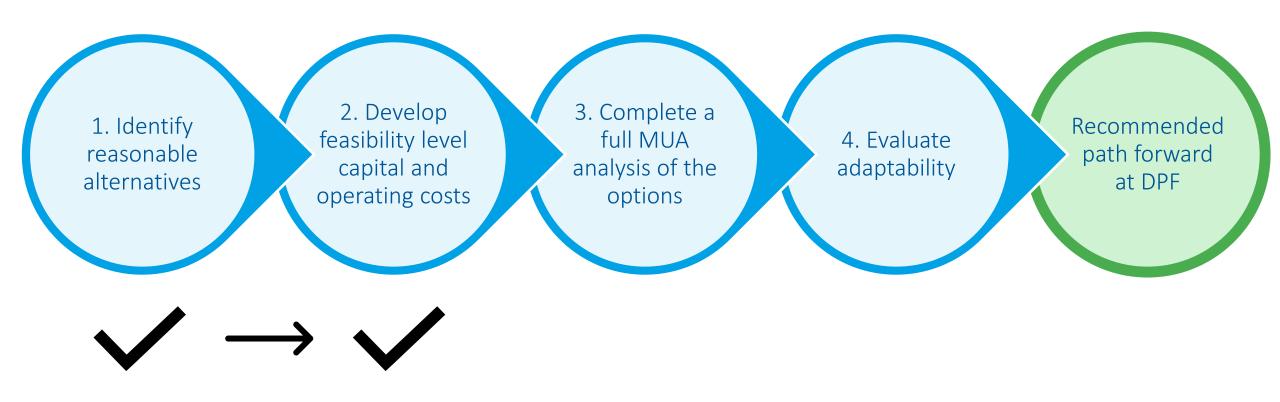
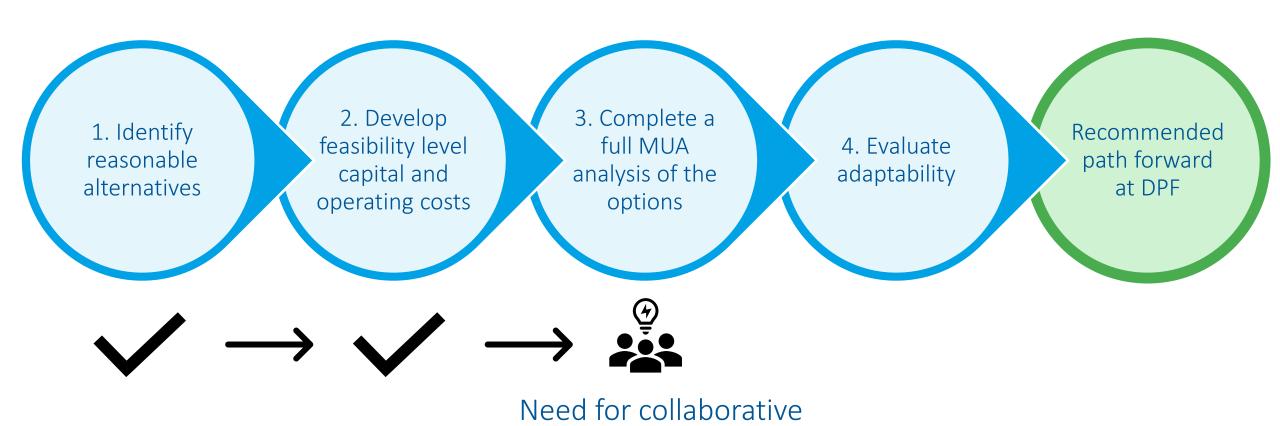

- High rate activated sludge (HRAS)
 - <1 day SRT
 - <2 hour HRT
- Sorb COD to biological floc
- Divert to anaerobic digestion

Fig. 1. The typical domestic wastewater treatment process flow diagram of (a) Continuously Stirred Tank Reactor (CSTR) with primary treatment, (b) Plug-Flow (PF) reactor system with primary treatment, (b) Contact-Stabilization with primary treatment, (c) A-stage (without primary treatment) and (d) Contact-Stabilization (CS) without primary treatment.

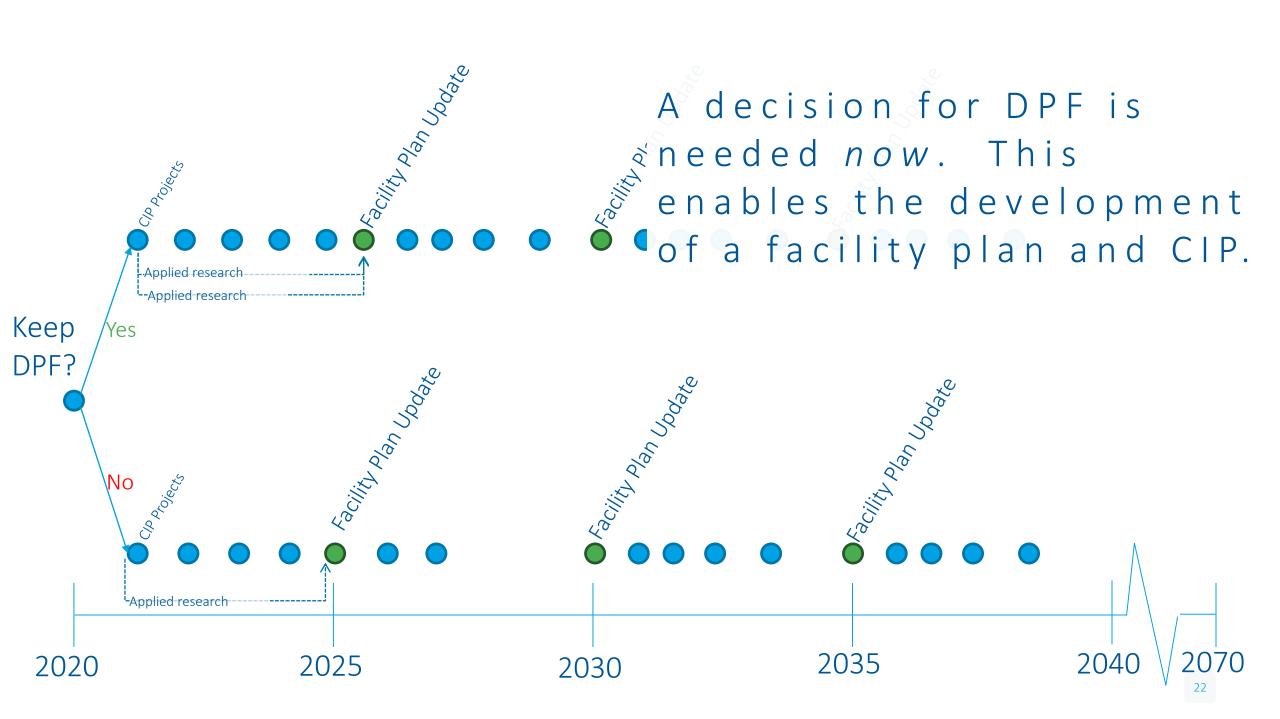
Are we focused too much on today, and not on a resource recovery future?


How do we make a decision on DPF?

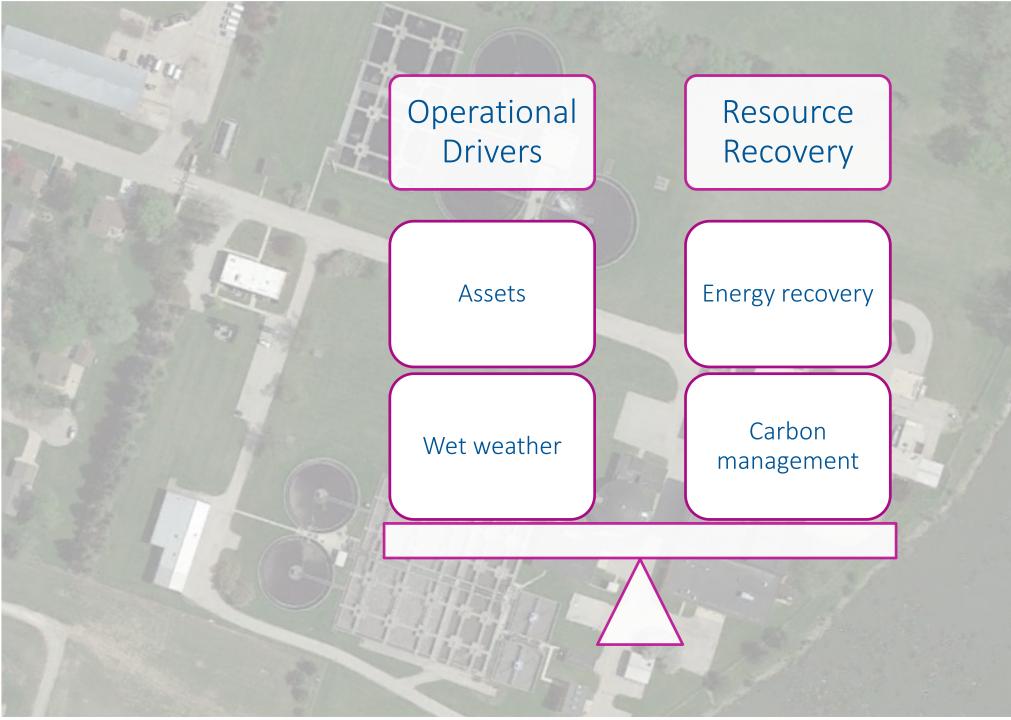

2. Develop feasibility study level capital cost and operating costs

Options	Capital Cost	Main Components
Option 1	\$80M to \$110M	 Existing CIP (headworks, filters, UV, clarifiers) Aeration basin improvements New clarifier
Option 2	\$40M to \$60M Pump Station and Pipeline \$30M to \$60M DPF Storage \$70M to \$120M GBF improvements \$140M to \$240M Total	 30 mgd pump station and pipeline DPF storage GPF expansion (south primary clarifiers, south aeration basin, south final clarifiers, disinfection) Headworks expansion
Option 3	\$100M to \$130M	 Existing CIP (headworks, filters, UV, clarifiers) Aeration basin improvements (A/B stage) New clarifier

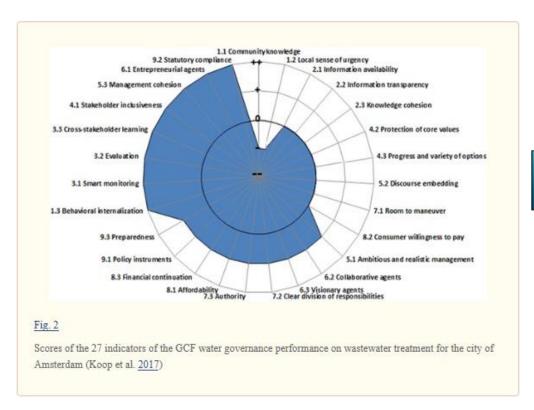
How do we make a decision on DPF?

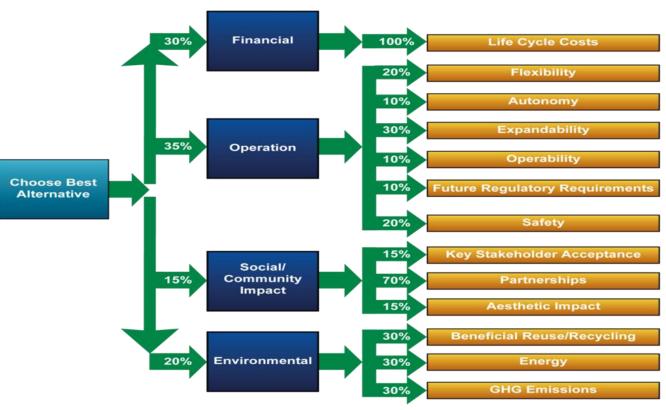


How do we make a decision on DPF?



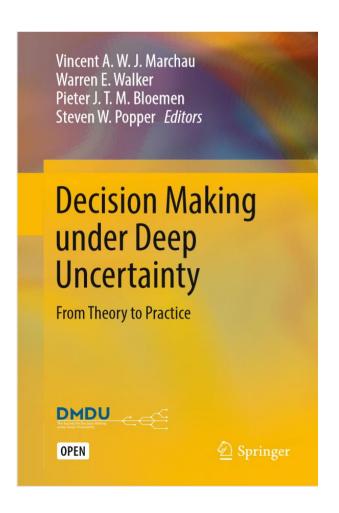
discussions in the next


two sessions



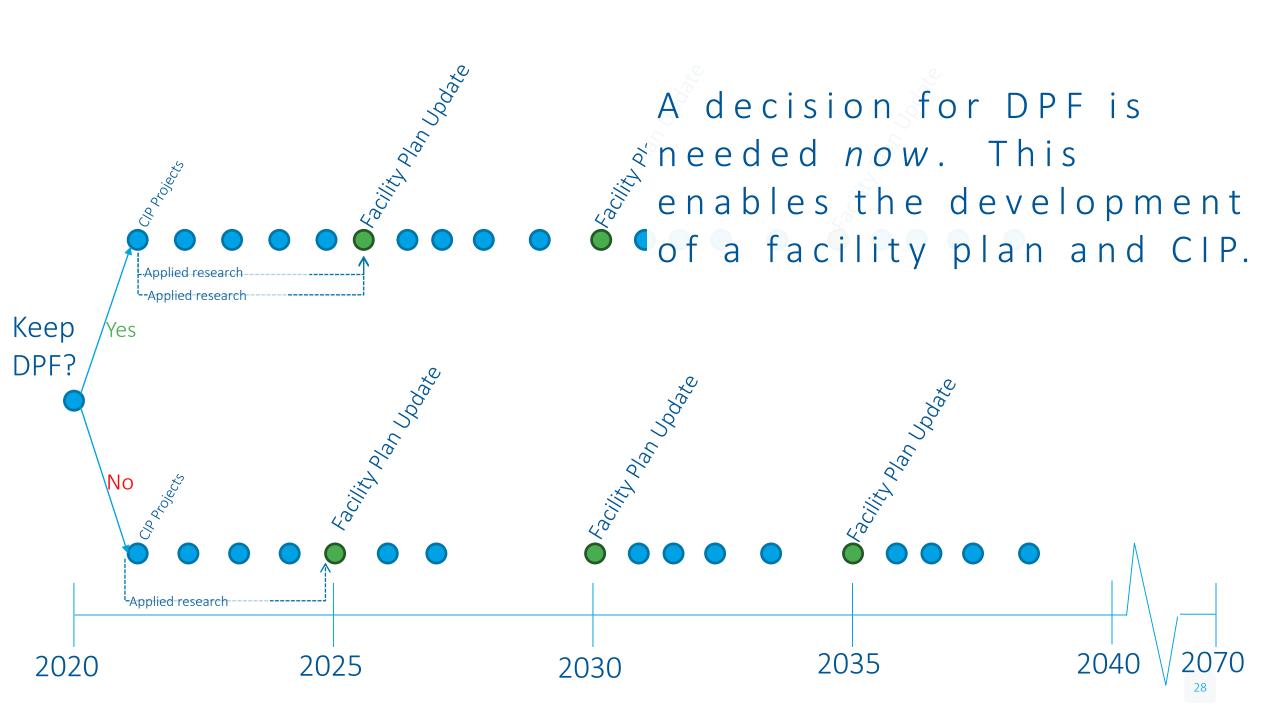
Risks, Opportunities and MUA

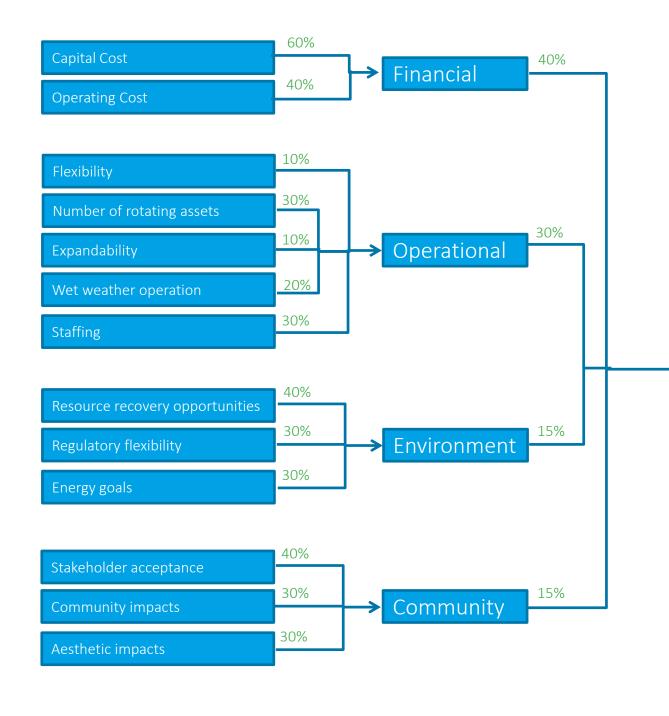
Thinking through MUA criteria will be particularly critical for the DPF vision



Example output from the Netherlands

R2E2 MUA

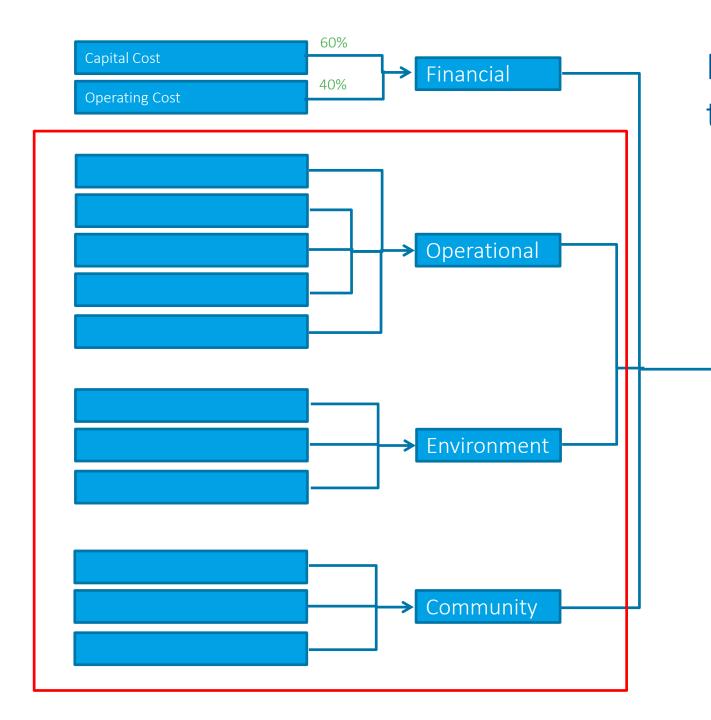

Five approaches for decision making in an uncertain world



- Robust decision making (RDM): stress test alternatives under various scenarios for technical robustness
- **Dynamic adaptive planning (DAP):** implementation of a plan that is adapted over time based on new knowledge
- **Dynamic adaptive policy planning (DAPP):** development of alternative routes as part of DAP
- **Info-Gap Decision Theory (IG):** An info-gap is the disparity between what is know and what needs to be known to make a decision; evaluation of a large range of options computationally
- Engineering Options Analysis (EOA): assignment of economic value to technical flexibility

How can dynamic adaptive planning be implemented for NEW Water?

- Specify goals and objectives Risks, opportunities, and MUA
- Develop an initial plan to meet these goals and objectives 5-year CIP
- Identifying the vulnerabilities of the plan Addressed by MUA
- Develop an initial plan of actions to be taken immediately upon implementation to protect it against some of these vulnerabilities Applied Research Plan
- Establishment of signposts to monitor the remaining uncertain vulnerabilities –
 Future risks and opportunities
- Continued development of actions to advance the plan as the future becomes more certain – 10-year and 15-year CIP

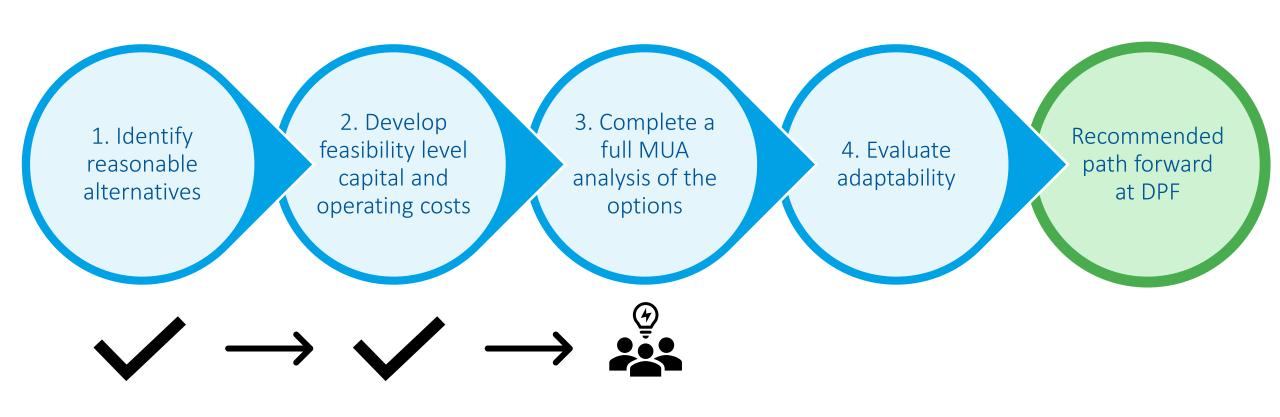


MUA is going to drive the ultimate decision

Option 1: DPF with step feed and equalization

Option 2: DP PS and equalization

Option 3: DPF with carbon redirection


MUA is going to drive the ultimate decision

Option 1: DPF with step feed and equalization

Option 2: DP PS and equalization

Option 3: DPF with carbon redirection

How do we make a decision on DPF?

Finalize criteria on July 2, 2020

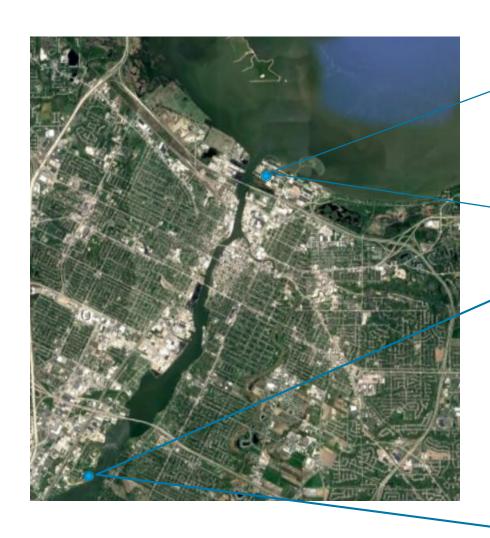
Session 2 notes

Step 1 - Understanding the context: Future Flows and Loads

DPF Projected Flows and Loads

YEAR	INFLUENT PARAMETER	AVERAGE DAY	MAXIMUM 30-DAY RA	MAXIMU M 7-DAY RA	MAXIMUM DAY	PEAK HOUR
2020	Flow (MGD)	9.5	14.6	17.5	34.2	53.4
	BOD (ppd)	20,862	31,084	36,091	54,659	
	TSS (ppd)	17,256	35,203	45,556	128,386	
	NH ₃ -N (ppd)	1,479	2,263	2,559	3,830	
	TKN (ppd)	2,378	3,591	4,066	7,562	
	TP (ppd)	353	515	610	1,132	
	Flow (MGD)	11.0	18.4	21.4	38.0	57.3
	BOD (ppd)	27,442	40,889	47,475	71,899	
2040	TSS (ppd)	22,714	46,336	59,964	168,991	
2040	NH ₃ -N (ppd)	1,968	3,011	3,404	5,097	
	TKN (ppd)	3,194	4,823	5,462	10,157	
	TP (ppd)	451	735	780	1,448	

33


Step 1: Understanding the context: Required Infrastructure Investment

Unit Process	Identified Issues
Influent Pumping	Age, peak flow capacity
Screening	Capture performance, peak flow capacity
Grit Removal	Age, operation, capture performance, peak flow capacity
Activated Sludge Aeration	
Intermediate Clarifiers	Age, peak flow capacity
RAS and WAS pumping	Age (both systems)
Second Stage Aeration	Not used
Final Clarifiers	Age, peak flow capacity
Tertiary Filters	Age, peak flow capacity
UV Disinfection	Peak flow capacity
Scum Handling (plant wide)	Operation, maintenance, capacity

Step 2: What are the risks and opportunities for Keeping DPF?

- 1) Water quality and permit benefit for two plants?
- 2) Does the DPF have Other Value? (Outside the fence to customers or neighbors.)
- 4) Asset Value and Maintenance
- 5) Operational considerations
- 6) Understanding the Regulatory Possibilities for Wet Weather Treatment

Is there a water quality benefit to two discharges?

Step 2: Water Quality & Permit Risks and Opportunities for Keeping DPF

Risks

- Possibly more legal liability with two discharges.
- Emerging contaminants
 discharged at two locations
 could be a future risk.

General

- Bubble permit between two facilities (TP and TSS) and permit limits established by TMDL
- Removing DPF discharge and moving upstream likely not a huge impact on water quality.
- Potentially worse Fox River water quality if no DPF discharge (mainly suspended solids)

Opportunities

 Two plants may have more flexibility to trade mass between the plants for a mass-based limit

Step 2: Outside the Fence Considerations Risks and Opportunities for Keeping DPF

Risks

- Few "outside the fence" risks such as odor.
- All things equal, one plant is better than two so could possibly eliminate DPF

General

- Plant is relatively isolated with mostly park space surrounding it.
- One or two discharges isn't a huge driver for customer decisions.
- No major complaints about facility
- No decentralization driver for combining the plants.

Opportunities

- Little opportunity or interest in land re-use or site redevelopment for alternative purposes.
- Little opportunity for reclaimed wastewater from DPF by customers.
- Potential opportunity for river trail in the future – could be with or without the plant.
- Two plants provide more resiliency.

Step 2: Asset Value And Maintenance Risks and Opportunities for Keeping DPF

Risks

- Too many individual assets at DPF that take too much operations. The GBF and DPF have the same number liquid assets.
- Much maintenance time invested at DPF relative to its size.

General

- Intermediate clarifiers are a pinch point
- Wet weather flows are challenging.
- Dry weather flow operation is stable.

Opportunities

- Final clarifiers, filters, back end of the facility are valuable,
- Blowers relatively new
- Lots of space for expansion
- Continue to use recent electrical investments and new generators
- IT systems of two plants well tied together

Step 2: Operational Considerations Risks and Opportunities for Keeping DPF

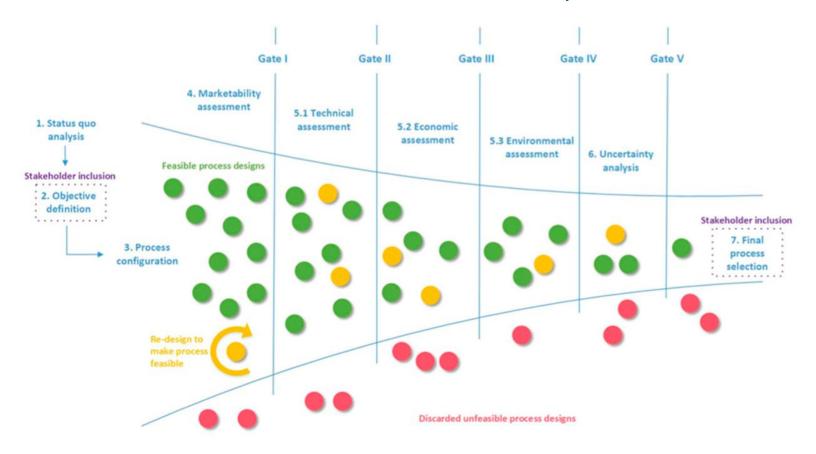
Risks General

- Wet weather is a challenge. Large loading swings cause issues.
- Final clarifiers are used for equalization, but this is operationally intensive. Formal equalization volume could alleviate operational issues during wet weather flow.
- Intermediate clarifiers are a critical bottleneck to process stability; high risk operational condition

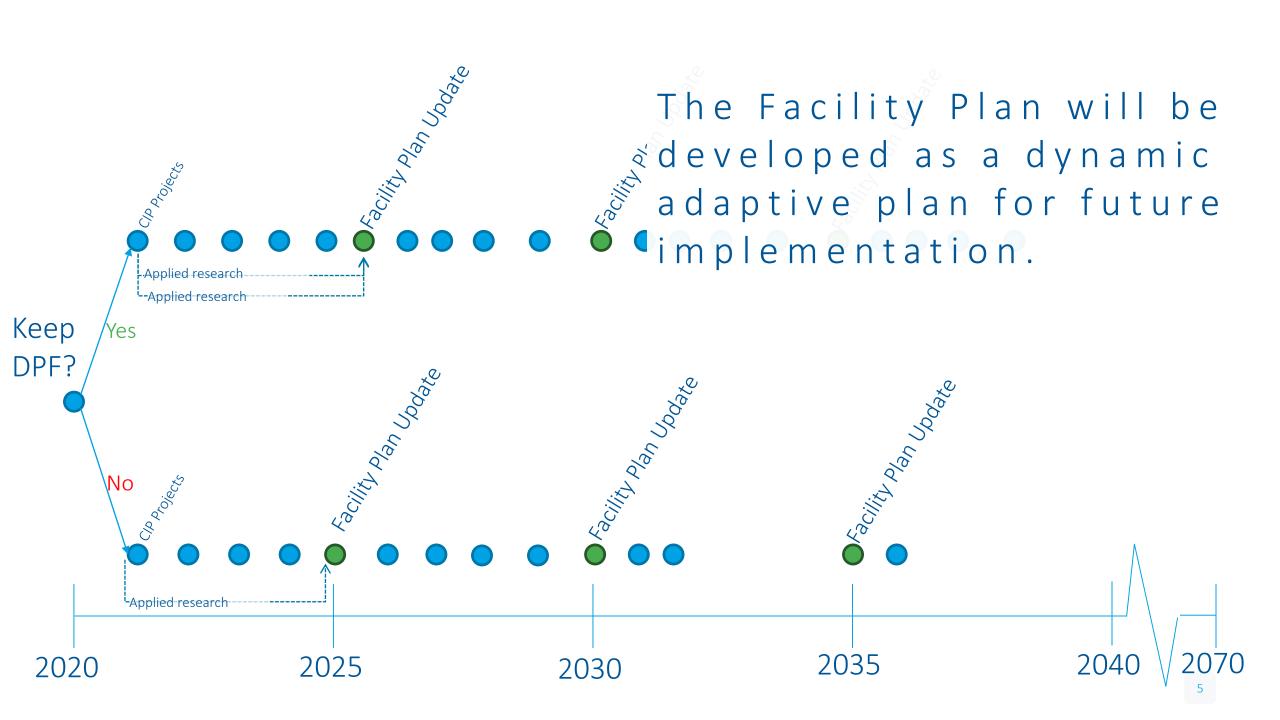
Opportunities

- Flexibility is a benefit; ability to shift load to GBF from mill waste as well as 5 mgd of metro wastewater
- Stable operations at lower influent flows (fairly good resilience to swings in industrial loadings)
- Good and stable operations for normal flows

GREEN BAY FACILITY & DE PERE FACILITY 50-Year Vision – Session 4



Today's Goals


- 1. Discuss and finalize approach for incorporation of a 50-year vision
- 2. Finalize criteria and approach for the MUA for the Facility Plan

Looking ahead 50 years

Development of a "technological constellation" to address today and tomorrow

Figure 1. Funnel development and stage gating model adapted from [26] to make it specially applicable for water resource factory (WRF) process design purposes.

The NEW Water Facility Plan is a combination of facility planning and master planning

Table 1.1 Progressive transition of levels of uncertainty Level 1 Level 2 Level 3 Total ignorance Complete Level 4 (deep uncertainty) determinism Level 4a Level 4b Relating this concept to a Context (X) Alternate futures (with A few plausible Many plausible Unknown future A clear enough 50-year vision future probabilities) futures futures Identify long-term risk categories and risks System model A few Unknown A single A single (stochastic) Many Develop a likely (deterministic) alternative system model; system model alternative know we don't system model system models system models response know Identify a facility plan A confidence interval System A point estimate A limited range A wide range of Unknown outcomes (O) for each for each outcome of outcomes outcomes: know outcomes opportunity we don't know outcome A limited range Unknown Weights (W) A single set of Several sets of weights, A wide range of with a probability weights; know weights weights weights attached to each set we don't know

Facility Planning

Master Planning

Risk category	Risk	Likely Response	Facility Plan Opportunity
Regulatory	New effluent compounds	Tertiary treatment/ membrane filtration	Maintain site footprint, consider as part of DPF improvements
	Effluent nitrogen limits	Aeration basin modifications	Develop plan for basin modifications
	Microplastics	Tertiary treatment/ membrane filtration	Maintain site footprint, consider as part of DPF improvements
	GHG emission regulations	Reduce use of non- renewable energy	

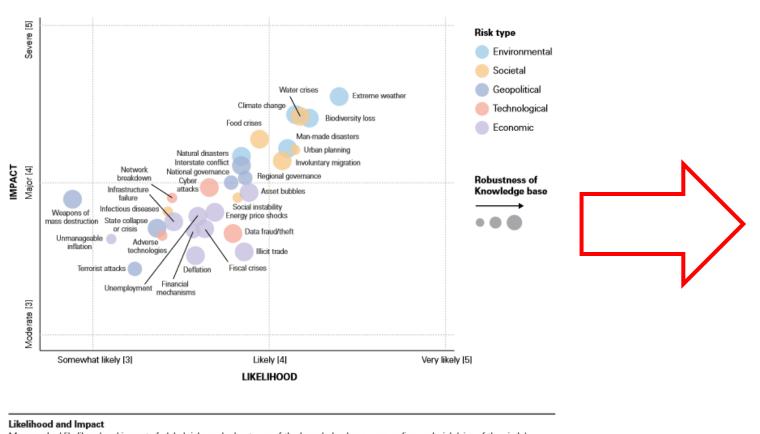
Risk category	Risk	Likely Response	Facility Plan Opportunity
Aging infrastructure	Concrete failure	Repair and maintain	Plan for concrete rehabilitation in all projects
Shift in industry / demographics	Significant reduction in organic loading	Reduction in dry weather hydraulic capacity needs	Phased implementation of organic loading projects
	Decreased water usage from conservation	Optimization of basin operation	
	Rapid population growth	Expansion of facilities	Maintain expansion flexibility

Risk category	Risk	Likely Response	Facility Plan Opportunity
Community changes	Increased demand for reuse water	Tertiary treatment/ membrane filtration	Maintain site footprint, consider as part of DPF improvements

Risk category	Risk	Likely Response	Facility Plan Opportunity

Emerging metrics for decision making

UN SDGs are increasingly being considered as foundation goals



Our Future on Earth presents concepts from the Stockholm Resilience Center

These five risks, or a subset of them, showed up repeatedly across the different questions of this survey

CLIMATE CHANGE
EXTREME WEATHER
BIODIVERSITY LOSS
FOOD CRISES
WATER CRISES

Mean ranked likelihood and impact of global risks and robustness of the knowledge base surrounding each risk (size of the circle) for the 30 global risks in 5 categories (colors). Source: Future Earth Global Risks Scientists' Perception survey, 2019

ISI Envision framework can provide additional metrics

WELLBEING

- QL1.1 Improve Community Quality of Life
- QL1.2 Enhance Public Health & Safety
- QL1.3 Improve Construction Safety
- **QL1.4** Minimize Noise & Vibration
- QL1.5 Minimize Light Pollution
- QL1.6 Minimize Construction Impacts

MOBILITY

- QL2.1 Improve Community Mobility & Access
- QL2.2 Encourage Sustainable Transportation
- QL2.3 Improve Access & Wayfinding

COMMUNITY

- QL3.1 Advance Equity & Social Justice
- **QL3.2** Preserve Historic & Cultural Resources
- QL3.3 Enhance Views & Local Character
- QL3.4 Enhance Public Space & Amenities
- **QL0.0** Innovate or Exceed Credit Requirements

Leadership

12 Credits

COLLABORATION

- LD1.1 Provide Effective Leadership & Commitment
- LD1.2 Foster Collaboration & Teamwork
- N LD1.3 Provide for Stakeholder Involvement
 - LD1.4 Pursue Byproduct Synergies

N PLANNING

- LD2.1 Establish a Sustainability Management Plan
- LD2.2 Plan for Sustainable Communities
- LD2.3 Plan for Long-Term Monitoring & Maintenance
- LD2.4 Plan for End-of-Life

ECONOMY

- LD3.1 Stimulate Economic Prosperity & Development
- LD3.2 Develop Local Skills & Capabilities
- LD3.3 Conduct a Life-Cycle Economic Evaluation
- LD0.0 Innovate or Exceed Credit Requirements

MATERIALS

- RA1.1 Support Sustainable Procurement Practices
- RA1.2 Use Recycled Materials
- RA1.3 Reduce Operational Waste
- RA1.4 Reduce Construction Waste
- RA1.5 Balance Earthwork On Site

ENERGY

- RA2.1 Reduce Operational Energy Consumption
- RA2.2 Reduce Construction Energy Consumption N
- RA2.3 Use Renewable Energy
- RA2.4 Commission & Monitor Energy Systems

WATER

- RA3.1 Preserve Water Resources
- RA3.2 Reduce Operational Water Consumption
- RA3.3 Reduce Construction Water Consumption
- RA3.4 Monitor Water Systems
- RAO.0 Innovate or Exceed Credit Requirements

SITING

N

0

(N)

- NW1.1 Preserve Sites of High Ecological Value
- **NW1.2** Provide Wetland & Surface Water Buffers
- NW1.3 Preserve Prime Farmland
- NW1.4 Preserve Undeveloped Land

CONSERVATION

- **NW2.1** Reclaim Brownfields
- NW2.2 Manage Stormwater
- NW2.3 Reduce Pesticide & Fertilizer Impacts
- NW2.4 Protect Surface & Groundwater Quality

ECOLOGY

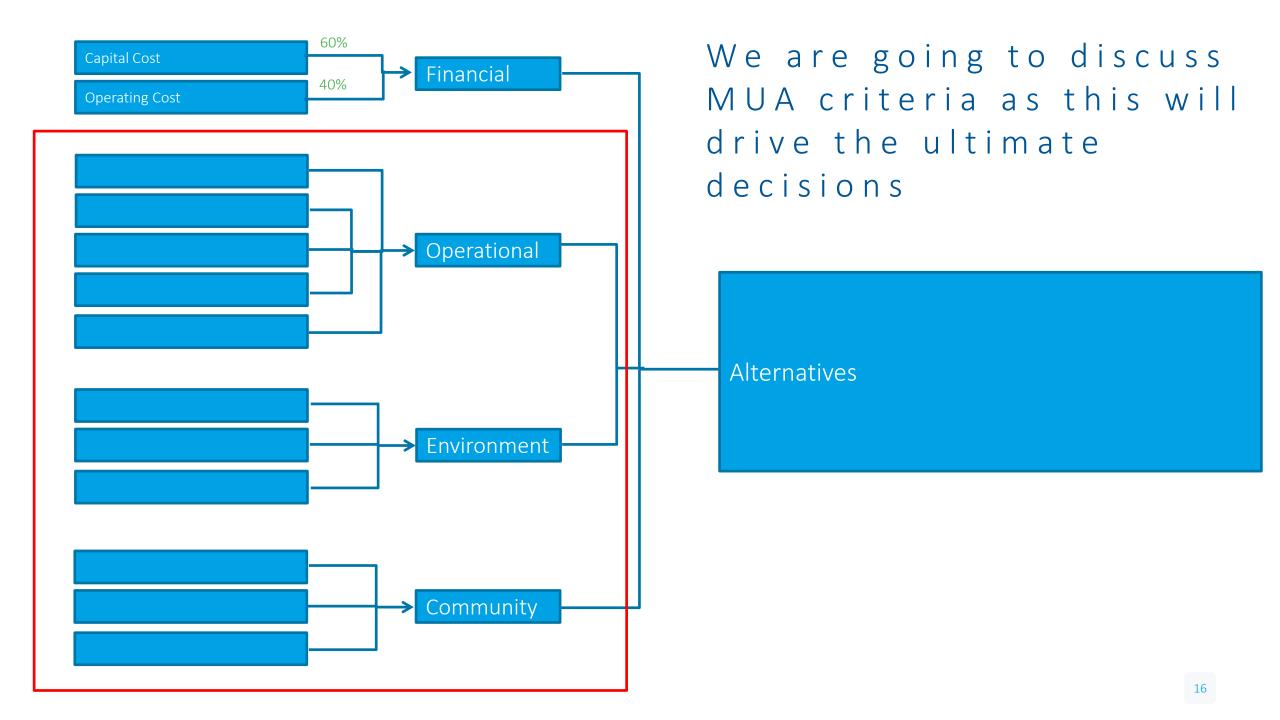
- **NW3.1** Enhance Functional Habitats
- NW3.2 Enhance Wetland & Surface Water Functions
- NW3.3 Maintain Floodplain Functions
- NW3.4 Control Invasive Species
- NW3.5 Protect Soil Health
- NW0.0 Innovate or Exceed Credit Requirements

EMISSIONS

- CR1.1 Reduce Net Embodied Carbon
- CR1.2 Reduce Greenhouse Gas Emissions
- CR1.3 Reduce Air Pollutant Emissions

RESILIENCE

- CR2.1 Avoid Unsuitable Development
- CR2.2 Assess Climate Change Vulnerability
- CR2.3 Evaluate Risk & Resilience
- CR2.4 Establish Resilience Goals and Strategies
- CR2.5 Maximize Resilience
- CR2.6 Improve Infrastructure Integration
- CRO.0 Innovate or Exceed Credit Requirements


0

0

(N)

N

Several questions to debate today

- Is resilience and adaptability an evaluation criteria or a non-negotiable, foundational goal?
- Should a ranking be used for criteria, or a binary (yes/no) approach?
- Are there broad, global categories that will change recommended decisions?

MUA Tool review